summaryrefslogtreecommitdiff
path: root/2006/CH4
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2006/CH4
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2006/CH4')
-rwxr-xr-x2006/CH4/EX4.1/ex4_1.sce16
-rwxr-xr-x2006/CH4/EX4.10/ex4_10.sce21
-rwxr-xr-x2006/CH4/EX4.3/ex4_3.sce15
-rwxr-xr-x2006/CH4/EX4.4/ex4_4.sce22
-rwxr-xr-x2006/CH4/EX4.5/ex4_5.sce21
-rwxr-xr-x2006/CH4/EX4.6/ex4_6.sce29
-rwxr-xr-x2006/CH4/EX4.7/ex4_7.sce19
-rwxr-xr-x2006/CH4/EX4.8/ex4_8.sce10
-rwxr-xr-x2006/CH4/EX4.9/ex4_9.sce20
9 files changed, 173 insertions, 0 deletions
diff --git a/2006/CH4/EX4.1/ex4_1.sce b/2006/CH4/EX4.1/ex4_1.sce
new file mode 100755
index 000000000..d70c2e75f
--- /dev/null
+++ b/2006/CH4/EX4.1/ex4_1.sce
@@ -0,0 +1,16 @@
+clc;
+p1=5; // Pressure of Helium gas at initial state in bar
+T1=222; // Temperature of Helium gas at initial state in K
+V1=0.055; // Volume of Helium gas at initial state in m^3
+n=1.5; // Index of expansion process
+R=2.078;// Characteristic gas constant of Helium gas in kJ/kg K
+p2=2; // Pressure of Helium gas at final state (after expansion) in bar
+disp ("Method I");
+V2=V1*(p1/p2)^(1/n);// From Polytropic process relation for final volume
+W=((p2*10^2*V2)-(p1*10^2*V1))/(n-1); // Work done from Polytropic process relation
+disp ("kJ",W,"Work done =");
+disp ("Method II");
+m=(p1*10^2*V1)/(R*T1); // ideal gas equation
+T2=T1*(p2/p1)^((n-1)/n); // From Polytropic process relation of final temperature
+W=(m*R*(T1-T2))/(1-n); // Work done from Polytropic process relation
+disp ("kJ",W,"Work done =");
diff --git a/2006/CH4/EX4.10/ex4_10.sce b/2006/CH4/EX4.10/ex4_10.sce
new file mode 100755
index 000000000..59b9f9e41
--- /dev/null
+++ b/2006/CH4/EX4.10/ex4_10.sce
@@ -0,0 +1,21 @@
+clc;
+Tc1=10; // Feed water inlet temperature in degree celcius
+Tc2=77; // Feed water outlet temperature in degree celcius
+th1=166; // Initial temperature of flue gas in degree celcius
+r=4; // Ratio of mass flow rates of flue gases and water
+Ch=1.05; // The specific heat of flue gas in kJ/kg K
+Cc=4.187; // The specific heat of feed water in kJ/kg K
+U=114; // Overall heat transfer coefficient in W/m^2
+mc=1; // massflowrate of feed water in kg/s
+th2=th1-((Cc*(Tc2-Tc1))/(r*Ch)); // Outlet temperature of flue gas in degree celcius
+Q=mc/3600*Cc*(Tc2-Tc1); // Heat transfer rate per kg/h of water flow
+// Parallel flow
+del_Tm=((th1-Tc1)-(th2-Tc2))/log ((th1-Tc1)/(th2-Tc2)); // Logarthamic Mean Temperature Difference in degree celcius
+A=Q*10^3/(U*del_Tm); // Economiser surface area
+disp ("degree celcius",del_Tm,"Logarthamic Mean Temperature Difference="," (a)Parallel flow");
+disp ("m^2",A,"Economiser surface area =");
+// Counter flow
+del_Tm=((th1-Tc2)-(th2-Tc1))/log ((th1-Tc2)/(th2-Tc1)); // Logarthamic Mean Temperature Difference in degree celcius
+A=Q*10^3/(U*del_Tm); // Economiser surface area
+disp ("degree celcius",del_Tm,"Logarthamic Mean Temperature Difference="," (b) Counter flow");
+disp ("m^2",A,"Economiser surface area =");
diff --git a/2006/CH4/EX4.3/ex4_3.sce b/2006/CH4/EX4.3/ex4_3.sce
new file mode 100755
index 000000000..745e1b8e3
--- /dev/null
+++ b/2006/CH4/EX4.3/ex4_3.sce
@@ -0,0 +1,15 @@
+clc;
+p1=1.3; // Initial pressure of gas in bar
+V1=0.03; // Initial volume of gas in m^3
+V2=0.1; // Final volume of gas in m^3
+disp ("(a).Constant pressure process");
+W=p1*10^2*(V2-V1); // work done by gas
+disp("kJ",W,"work done by gas =");
+disp ("(b).Constant Temperature process");
+W=p1*10^2*V1*log(V2/V1);// Work done by gas
+disp("kJ",W,"work done by gas =");
+disp ("(c).polytropic process of index 1.3");
+n=1.3; //index of polytropic process
+p2=p1*(V1/V2)^n; // From Polytropic process relation for final pressure
+W=((p2*10^2*V2)-(p1*10^2*V1))/(1-n); // Work done by gas
+disp("kJ",W,"work done by gas =");
diff --git a/2006/CH4/EX4.4/ex4_4.sce b/2006/CH4/EX4.4/ex4_4.sce
new file mode 100755
index 000000000..6ac0f8806
--- /dev/null
+++ b/2006/CH4/EX4.4/ex4_4.sce
@@ -0,0 +1,22 @@
+clc;
+patm=1; // Atmospheric pressure in bar
+V1=0.0135; // Volume of Freon 12 at initial state in m^3
+D=9; // Diameter of the cylinder in cm
+m=90; // Mass of the piston in kg
+g=9.80665; // acceleration due to gravity in m/s^2
+// (a). Determination of the final pressure and volume of the system
+A=%pi/4 * (D*10^-2)^2; // Area of the cylinder
+p1=0.7449; // Initial pressure of saturated vapour at 30 degree celcius in MPa
+v1=0.023508; // Initial specific volume of saturated vapour at 30 degree celcius in m^3/kg
+p2=(patm*10^5)+(m*g)/A; // Final pressure of Freon 12
+v2=0.084022; // Final specific volume from superheated table at p2 and 30 degree celcius in m^3/kg
+mf=V1/v1; // Mass of Freon 12
+V2=mf*v2; // Final volume of Freon 12
+disp ("Pa",p2,"Final pressure = ","(a)");
+disp ("m^3 (round off error)",V2,"Final volume = ");
+// (b). Calculation of workdone by Freon 12 during this process
+Wirrev=p2*(V2-V1); // P dv Work done
+disp ("kJ (round off error)",Wirrev/1000,"Work done = ","(b)");
+// (c). Calculation of workdone by Freon 12 during reversible process
+Wrev=p1*10^6*V1*log (V2/V1);//From reversible process relation for work done
+disp ("kJ (round off error)",Wrev/1000,"Work done in reveersible process = ","(c)");
diff --git a/2006/CH4/EX4.5/ex4_5.sce b/2006/CH4/EX4.5/ex4_5.sce
new file mode 100755
index 000000000..b4dfdc509
--- /dev/null
+++ b/2006/CH4/EX4.5/ex4_5.sce
@@ -0,0 +1,21 @@
+clc;
+p1=0.1; // Initial pressure (before compression) of air in MPa
+T1=30; // Initial temperature (before compression) of air in degree celcius
+p2=0.9; // Final pressure (after compression) of air in MPa
+R=0.287; // Characteristic constant of air in kJ/kg k
+// (i) Actual work in the flow process
+// (a).Isothermal Process
+w=-R*(T1+273)*log (p2/p1); // work done for isothermal process
+disp ("kJ/kg",w,"work done = ","(a).Isothermal Process","(i) Actual work in the flow process");
+// (b).Polytropic process
+n=1.4; // Index of polytropic process
+T2=(T1+273)*(p2/p1)^((n-1)/n); // From Polytropic process relation for final temperature
+w=(n/(1-n))*R*(T2-(T1+273)); // work done for polytropic process
+disp ("kJ/kg",w,"compression work = ","(b).Polytropic process");
+// (ii).Nonflow work
+// (a).Isothermal Process
+w=-R*(T1+273)*log (p2/p1); // work done for isothermal process
+disp ("kJ/kg",w,"work done = ","(a).Isothermal Process","(ii).Nonflow work");
+// (b).Polytropic process
+w=(1/(1-n))*R*(T2-(T1+273));// work done for polytropic process
+disp ("kJ/kg",w,"compression work = ","(b).Polytropic process");
diff --git a/2006/CH4/EX4.6/ex4_6.sce b/2006/CH4/EX4.6/ex4_6.sce
new file mode 100755
index 000000000..07ba3e93a
--- /dev/null
+++ b/2006/CH4/EX4.6/ex4_6.sce
@@ -0,0 +1,29 @@
+clc;
+p1=1; // Initial pressure (before compression) of air in bar
+p2=8; // Final pressure (after compression) of air in bar
+Vp=15; // Displacement volume of reciprocating air compressor in litres
+Vc=0.05*Vp; // Clearance volume of reciprocating air compressor in litres
+N=600; // Speed of compressor in rpm
+V1=Vc+Vp; // Total volume of reciprocating air compressor in litres
+p3=p2; // constant pressure process
+p4=p1; // constant pressure process
+V3=Vc;// Clearance volume of reciprocating air compressor in litres
+n=1.3; // Index of reversible adiabatic compression process
+m=1.4; // Index of reversible adiabatic expansion process
+V4=V3*(p3/p4)^(1/m);
+// (a).Work per machine cycle
+Wcycle = ((n/(n-1))*p1*10^2*V1*10^-3*(1-(p2/p1)^((n-1)/n)))-((m/(m-1))*p4*10^2*V4*10^-3*(1-(p3/p4)^((m-1)/m))); // Work per machine cycle
+disp ("kJ",Wcycle,"Work per machine cycle (Error in textbook)","(a)");
+Wpower=abs (Wcycle)*(N/60); // Power consumption of the compressor
+disp ("kW",Wpower,"Power consumption of the compressor");
+// (b).Work of the cycle if m=n
+m=n;
+W_cycle=(n/(n-1))*p1*10^2*(V1-V4)*10^-3*(1-(p2/p1)^((n-1)/n)); // Work per machine cycle
+disp ("kJ",W_cycle,"Work per machine cycle","(b)");
+er=((W_cycle-Wcycle)/Wcycle) * 100 // Error involved in calculating work if m=n
+disp ("%",er,"Error (Error in textbook)= ");
+// (c).Clearance volumetric efficiency
+C=Vc/Vp;
+eff = 1+C+-C*(p2/p1)^(1/n); // Clearance volumetric efficiency
+disp ("%",eff*100,"Clearance volumetric efficiency = ","(c).Clearance volumetric efficiency");
+
diff --git a/2006/CH4/EX4.7/ex4_7.sce b/2006/CH4/EX4.7/ex4_7.sce
new file mode 100755
index 000000000..2269a1af7
--- /dev/null
+++ b/2006/CH4/EX4.7/ex4_7.sce
@@ -0,0 +1,19 @@
+clc;
+D=150; // Cylinder Diameter in mm
+L=200; // Piston stroke in mm
+C=0.05; // Clearance factor
+p1=15; // Steam inlet conditions (saturated) in bar
+p4=1; // Exhaust or back pressure in bar
+p2=p1; // Constant pressure process
+p5=p4; // Constant pressure process
+Vp=(%pi*(D*10^-3)^2*L*10^-3)/4; // Swept volme of cylinder
+Vc=C*Vp; // Clearance volume of cylinder
+V3=Vc+Vp; // Total volume of cylinder
+V1=Vc; // Clearance volume
+V6=V1; // constant volume process
+V4=V3; // constant volume process
+V5=Vc+0.3*Vp; // Compression begins at 30% of stroke
+V2=Vc+0.4*Vp; // Cut-off occurs at 40% of stroke
+p6=p5*(V5/V6); // Pressure after compression
+Wcycle=(p1*10^2*(V2-V1))+(p2*10^2*V2*log (V3/V2))-(p4*10^2*(V4-V5))-(p5*10^2*V5* log(V5/V6)); // Work per Cycle
+disp("kJ",Wcycle,"Work per cycle =");
diff --git a/2006/CH4/EX4.8/ex4_8.sce b/2006/CH4/EX4.8/ex4_8.sce
new file mode 100755
index 000000000..f64e8261a
--- /dev/null
+++ b/2006/CH4/EX4.8/ex4_8.sce
@@ -0,0 +1,10 @@
+clc;
+D=10; //Bore in cm
+L=12.5; //Stroke length in cm
+a=9.68; // Area of indicator card in cm^2
+l=5.33; // Card length in cm
+Ks=21.7; // Indicator spring constant per meter of card length
+A=(%pi*(D*10^-2)^2)/4; // Area of pisaton
+Pm=(a/l)*10^-2*Ks*10^6; // Mean effective pressure
+W=Pm*A*L*10^-2; // Work done by cycle
+disp("kJ",W,"Work done by cycle = ");
diff --git a/2006/CH4/EX4.9/ex4_9.sce b/2006/CH4/EX4.9/ex4_9.sce
new file mode 100755
index 000000000..395adbd4c
--- /dev/null
+++ b/2006/CH4/EX4.9/ex4_9.sce
@@ -0,0 +1,20 @@
+clc;
+D=152; // Bore of steam engine in mm
+l=89; // Stroke length of steam engine in mm
+a1=8;a2=10; // area of indicatior diagram on two sides
+Ks=50; // Indicator spring constant in lbf/in^2/in
+N=310; // Engine speed in rpm
+d=0.664; // Diameter of flywheel in m
+// (a)
+a=(a1+a2)/2; // Average area of indicator diagram
+Ks=50*4.44822/(0.0254)^3; // Unit conversion from lbf/in^2/in to N/m^2
+pm=(a/(l/10))*10^-2*Ks; // Mean effective pressure
+A=(%pi*(D*10^-3)^2)/4; // Area of the piston
+IP=2*pm*l*10^-3*A*N/60; // Indicated power
+disp ("kW",IP/1000,"Indicated power of Engine =","(a)");
+// (b)
+F=12-1.5; // Tangential force on the brake drum in kgf
+BP=F*9.81*d/2*2*%pi*N/60; // Brake power of Engine
+eff=BP/IP *100 ; // Mechanical efficiency
+disp ("kW",BP/1000,"Brake power of Engine = ","(b)");
+disp ("%",eff,"Mechanical efficiency of Engine =");