diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2006/CH14 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2006/CH14')
-rwxr-xr-x | 2006/CH14/EX14.1/ex14_1.sce | 6 | ||||
-rwxr-xr-x | 2006/CH14/EX14.10/ex14_10.sce | 29 | ||||
-rwxr-xr-x | 2006/CH14/EX14.11/ex14_11.sce | 11 | ||||
-rwxr-xr-x | 2006/CH14/EX14.12/ex14_12.sce | 22 | ||||
-rwxr-xr-x | 2006/CH14/EX14.2/ex14_2.sce | 6 | ||||
-rwxr-xr-x | 2006/CH14/EX14.3/ex14_3.sce | 16 | ||||
-rwxr-xr-x | 2006/CH14/EX14.4/ex14_4.sce | 8 | ||||
-rwxr-xr-x | 2006/CH14/EX14.5/ex14_5.sce | 16 | ||||
-rwxr-xr-x | 2006/CH14/EX14.6/ex14_6.sce | 23 | ||||
-rwxr-xr-x | 2006/CH14/EX14.7/ex14_7.sce | 16 | ||||
-rwxr-xr-x | 2006/CH14/EX14.8/ex14_8.sce | 7 | ||||
-rwxr-xr-x | 2006/CH14/EX14.9/ex14_9.sce | 16 |
12 files changed, 176 insertions, 0 deletions
diff --git a/2006/CH14/EX14.1/ex14_1.sce b/2006/CH14/EX14.1/ex14_1.sce new file mode 100755 index 000000000..7b8d0554e --- /dev/null +++ b/2006/CH14/EX14.1/ex14_1.sce @@ -0,0 +1,6 @@ +clc;
+// From the Table 14.1
+del_hfHCL=92307; // Enthalpy of Heat in kJ/kmol
+del_hfH2O=-241818; // Enthalpy of Heat kJ/kmol
+del_Ho=4*del_hfHCL-2*del_hfH2O; // The standard heat of reaction from enthalpy equation
+disp ("kJ (answer mentioned in the textbook is wrong)",del_Ho,"The standard heat of reaction for the process = ");
diff --git a/2006/CH14/EX14.10/ex14_10.sce b/2006/CH14/EX14.10/ex14_10.sce new file mode 100755 index 000000000..796916a22 --- /dev/null +++ b/2006/CH14/EX14.10/ex14_10.sce @@ -0,0 +1,29 @@ +clc;
+// (a).The product CO2 is also at 298K
+Pco=2/3; // Paratial pressure of CO in atm
+Po2=1/3; // Paratial pressure of O2 in atm
+Pco2=1; // Paratial pressure of CO2 in atm
+T0=298; // Temperature of surroundings in kelvin
+R_1=8.3143; // Universal gas constant of air in kJ/kmol K
+// From table 14.1 at 298 K and 1 atm
+s_co2=213.795-R_1*log (Pco2); // entropies in kJ/kmol K
+s_co=197.653-R_1*log (Pco); // entropies in kJ/kmol K
+s_o2=205.03-R_1*log (Po2); // entropies in kJ/kmol K
+del_Scv=s_co2-s_co-1/2*s_o2; // Entropy change of comtrol volume
+// From table 14.1
+del_hfco2=-393509; del_hfco=-110525; // Enthalpy of Heat in kJ/kmol
+Q= del_hfco2- del_hfco; // Heat transfer (to surroundings)
+del_Ssurr=abs(Q)/T0; // Entropy change of surroundings
+del_Sgen=del_Scv+del_Ssurr; //Entropy change of universe
+disp ("kJ/K",del_Sgen,"Entropy change of universe = ","kJ/K",del_Ssurr,"Entropy change of surroundings = ","kJ/K",del_Scv,"Entropy change of comtrol volume = ","(a).The product CO2 is also at 298K");
+// (b).The reaction is adiabatic
+// Let the adiabatic flame temperature be T. Then since
+Q=0;
+C_p=44*0.8414;
+// From table A.16
+T=5057.5; //adiabatic flame temperature in kelvin
+s_CO2=213.795+C_p*log (T/T0); // entropies in kJ/kmol K
+del_Scv=s_CO2-s_co-1/2*s_o2; // Entropy change of comtrol volume
+del_Ssurr=abs(Q)/T0; // Entropy change of surroundings
+del_Sgen=del_Scv+del_Ssurr; //Entropy change of universe
+disp ("kJ/K",del_Sgen,"Entropy change of universe = ","kJ/K",del_Ssurr,"Entropy change of surroundings = ","kJ/K",del_Scv,"Entropy change of comtrol volume = ","(b).The reaction is adiabatic");
diff --git a/2006/CH14/EX14.11/ex14_11.sce b/2006/CH14/EX14.11/ex14_11.sce new file mode 100755 index 000000000..00c9585b3 --- /dev/null +++ b/2006/CH14/EX14.11/ex14_11.sce @@ -0,0 +1,11 @@ +clc;
+// The Combustion of H2 with Q2 from H2O
+//H2(g)+1/2 O2 (g)→H2O(l)+285830 kJ/kmol H2
+T0=298; // Temperature of surroundings in kelvin
+// From table 14.1 at 298 K
+del_hfH2O=-285830; // Enthalpy of Heat in kJ/kmol
+s_298H2O=69.94; s_298H2=130.684; s_298O2=205.142; // entropies in kJ/kmol K
+GP_GR=del_hfH2O-T0*(s_298H2O-s_298H2-1/2*s_298O2); // Formation of Gibbs function
+GR=0;
+GP=GP_GR-GR; // Standard Gibbs function of formation of liquid H2O
+disp ("kJ/kmol",GP,"Standard Gibbs function of formation of liquid H2O = ");
diff --git a/2006/CH14/EX14.12/ex14_12.sce b/2006/CH14/EX14.12/ex14_12.sce new file mode 100755 index 000000000..bec785529 --- /dev/null +++ b/2006/CH14/EX14.12/ex14_12.sce @@ -0,0 +1,22 @@ +clc;
+// the combustion equation
+// n1C3H8+n2O2+n3 N2 → n4 CO2+ n5 H2O+n6 O2+n7 N2
+T0=298; // Temperature of surroundings in kelvin
+// (a).Product species at 25 oC and 1 atm
+d_gfC3H8=-24290; d_gfCO2=-394359; d_gfH2O=-228570; // in kJ/kmol
+GR=d_gfC3H8;
+GP=3*d_gfCO2+4*d_gfH2O;
+Wmax=GR-GP; // Maximum possible work output
+M=44;//Molecular weight
+Wmax=Wmax/M;
+disp ("kJ/kg fuel (answer mentioned in the textbook is wrong)",Wmax,"Maximum possible work output = ","(a).");
+// (b).The actual partial pressures of products
+n1=1; n2=20; n3=75.2;
+n4=3; n5=4; n6=15; n7=75.2; // refer equation
+SR=19233; SP=19147; // in kJ/K from table
+HR=-104680; // in kJ/kmol fuel
+d_h0fCO2=-393509; d_h0fH2O=-241818; // in kJ/kmol
+HP=3*d_h0fCO2+4*d_h0fH2O;
+Wmax=HR-HP-T0*(SR-SP); // Maximum possible work output
+Wmax=Wmax/M;
+disp ("kJ/kg (round off error)",Wmax,"Maximum possible work output = ","(b).");
diff --git a/2006/CH14/EX14.2/ex14_2.sce b/2006/CH14/EX14.2/ex14_2.sce new file mode 100755 index 000000000..7dbf1df8a --- /dev/null +++ b/2006/CH14/EX14.2/ex14_2.sce @@ -0,0 +1,6 @@ +clc;
+del_Ho=5640000; // Heat released during the process
+// From the Table 14.1
+del_hfO2=-393509; del_hfH2O=-285830; // Enthalpy of Heat in kJ/kmol
+del_hfsucrose=12*del_hfO2+11*del_hfH2O+del_Ho; // The enthalpy formation of sucrose
+disp ("kJ/kmol (answer mentioned in the textbook is wrong)",del_hfsucrose,"The enthalpy formation of sucrose = ");
diff --git a/2006/CH14/EX14.3/ex14_3.sce b/2006/CH14/EX14.3/ex14_3.sce new file mode 100755 index 000000000..162819364 --- /dev/null +++ b/2006/CH14/EX14.3/ex14_3.sce @@ -0,0 +1,16 @@ +clc;
+// (a).Balancing of chemical equation
+// The unbalanced equation for the process is C8H18 + O2 + N2 → CO2 + H2O + N2
+x=8; // Carbon balance
+y=9; // Hydrogen balance
+z=12.5; // Oxygen balance in reverse order
+n=z*3.76; // Nitrogen Balance
+disp ("(a).Balancing of chemical equation");
+printf ("\n C8H18 + %0.1f O2 + %d N2 → %d CO2 + %d H2O + %d N2 \n ",z,n,x,y,n);
+// (b).The theoretical air-fuel ratio
+a=1; // Mole of C8H18
+AF1=(z+n)/a; //The theoretical air-fuel ratio on mole basis
+ma=28.84; // Molecular mass of air
+mc=114; // Molecular mass of C8H18
+AF2=(AF1*ma)/(a*mc); // The theoretical air-fuel ratio on mass basis
+disp ("kg air / kmol C8H18",AF2,"The theoretical air-fuel ratio on mass basis = ","kmol air / kmol C8H18",AF1,"The theoretical air-fuel ratio on mole basis = ","(b).The theoretical air-fuel ratio");
diff --git a/2006/CH14/EX14.4/ex14_4.sce b/2006/CH14/EX14.4/ex14_4.sce new file mode 100755 index 000000000..59fbbf9dc --- /dev/null +++ b/2006/CH14/EX14.4/ex14_4.sce @@ -0,0 +1,8 @@ +clc;
+// The combustion equation for C4H10 with 80% theoretical air is C4H10 +5.2(O2 + 3.76 N2) → a(1)CO + a(2)CO2 + 5H2O + 19.55N2
+// The following matrix shows the balance of C and O
+A=[1 1 ; 1 2];
+B=[4 ;5.4];
+a=A\B;
+disp ("The equation for the combustion of butane with 80% theoretical air is ")
+printf ("\n C4H10 +5.2(O2 + 3.76 N2) → %0.1f CO + %0.1f CO2 + 5H2O + 19.55N2",a(1),a(2));
diff --git a/2006/CH14/EX14.5/ex14_5.sce b/2006/CH14/EX14.5/ex14_5.sce new file mode 100755 index 000000000..aa64da71f --- /dev/null +++ b/2006/CH14/EX14.5/ex14_5.sce @@ -0,0 +1,16 @@ +clc;
+p=101.325; // Atmospheric pressure in kPa
+// The complete combustion equation for actane
+ // yC8H18+ x (O2+3.76N2) → n1 CO2+n2 H2O+n3 O2+n3 N2
+x=12.5*1.5; y=1;
+n1=8; n2=9; n3=6.28; n4=70.5;
+n=n1+n2+n3+n4; // Total number of moles of the products
+AFm=(x+x*3.76)/y ;// Air fuel ratio
+m=28.84;
+M=116; // Molecular weight of octane
+AF=AFm*m/M;
+yco2=n1/n; yH2O=n2/n; yO2=n3/n; yN2=n4/n;
+pH2O=p*yH2O; // Partial pressure of water vapour in the products
+Tsat=45.21; // In oC
+disp ("kg air/kg octane",AF,"Air fuel ratio = ");
+disp ("If the products are cooled below 25 oC then, the water vapour will condense. Because the cooled temperature is less than dew point temperature of water vapour i.e., T < Tsat.");
diff --git a/2006/CH14/EX14.6/ex14_6.sce b/2006/CH14/EX14.6/ex14_6.sce new file mode 100755 index 000000000..ec8d04571 --- /dev/null +++ b/2006/CH14/EX14.6/ex14_6.sce @@ -0,0 +1,23 @@ +clc;
+// The complete chemical equation is //[0.14H2+0.03CH4+0.27CO+0.045CO2+0.01O2+0.505N2]+0.255(O2+3.75N2) →0.2H2O+0.345CO2+1.44N2
+a=0.14; // Composition of H2 in air
+b=0.03; // Composition of CH4 in air
+c=0.27; // Composition of CO in air
+d=0.045; // Composition of CO2 in air
+e=0.01; // Composition of O2 in air
+f=0.505; // Composition of N2 in air
+g=(0.265-0.01); // O2 requirement from atmospheric air with 1% O2 already in fuel
+h=3.76; // By nitrogen balance
+i=1; // mole of the air
+AFvol=(g+(g*h))/i; // Air fuel ratio (theroretical)
+AFv=1.1*AFvol; // Air fuel ratio on mol (volume) basis
+disp ("kmol actual air/kmol fuel",AFv,"Air fuel ratio on mol (volume) basis =")
+M1=2; // Molecular mass of H2
+M2=16; // Molecular mass of CH4
+M3=28; // Molecular mass of CO
+M4=44; // Molecular mass of CO2
+M5=32; // Molecular mass of O2
+M=a*M1+b*M2+c*M3+d*M4+e*M5+f*M3; // Molecular mass of Fuel
+Ma=28.84; // Molecular mass of air
+AFm=AFv*Ma/(i*M); // Air fuel ratio on mass basis
+disp ("kg air / kg fuel",AFm,"Air fuel ratio on mass basis = ");
diff --git a/2006/CH14/EX14.7/ex14_7.sce b/2006/CH14/EX14.7/ex14_7.sce new file mode 100755 index 000000000..85812cd57 --- /dev/null +++ b/2006/CH14/EX14.7/ex14_7.sce @@ -0,0 +1,16 @@ +clc;
+//From table 14.2 at 25 oC and 1 atm for C8H8
+del_Ho=-2039.7; // LHV in MJ/kmol
+// Combustion equation is C3H8+ 5O2 +18.8N2 → 3CO2 +4H2O +18.8N2
+// From table 14.3
+h333_C3H8=2751; // h333_h298 of C3H8 in kJ/kmol
+h333_O2=147; // h333_h298 of O2 in kJ/kmol
+h333_N2=145; // h333_h298 of N2 in kJ/kmol
+h1333_CO2=52075; // h1333_h298 of CO2 in kJ/kmol
+h1333_H2O=32644; // h1333_h298 of H2O in kJ/kmol
+h1333_N2=32644; // h1333_h298 of N2 in kJ/kmol
+M=44; // molecular mass of C3H8
+Ha_H1=h333_C3H8+5*h333_C3H8+18.8*h333_N2; // The enthalpy differences
+Hb_H2=3*h1333_CO2+4*h1333_H2O+18.8*h1333_N2; // The enthalpy differences
+Q=(del_Ho+Hb_H2/1000-Ha_H1/1000)/M; // Heat transfer from combustion chamber
+disp ("MJ/kg C3H8",abs (Q),"Heat transfer from combustion chamber =");
diff --git a/2006/CH14/EX14.8/ex14_8.sce b/2006/CH14/EX14.8/ex14_8.sce new file mode 100755 index 000000000..33622f7c9 --- /dev/null +++ b/2006/CH14/EX14.8/ex14_8.sce @@ -0,0 +1,7 @@ +clc;
+Ha_H1=6220; // From example 14.7 in kJ/kmol
+del_Ho=-2039.7; // From example 14.7 LHV in MJ/kmol
+Hb_H2=-del_Ho+Ha_H1; // For adiabatic combustion of C3H8
+// Hb_H2=3*h1333_CO2+4*h1333_H2O+18.8*h1333_N2 By iteration process and making use of the values from Table A.3, A.13, A.15 we can get the adiabatic flame temperature is
+Tad=2300;// The adiabatic flame temperature in kelvin
+disp ("K",Tad,"The adiabatic flame temperature");
diff --git a/2006/CH14/EX14.9/ex14_9.sce b/2006/CH14/EX14.9/ex14_9.sce new file mode 100755 index 000000000..5da736239 --- /dev/null +++ b/2006/CH14/EX14.9/ex14_9.sce @@ -0,0 +1,16 @@ +clc;
+// (a).Entropy change per kmol of C
+// From table 14.1 at 298 K and 1 atm
+s_c=5.686; // Absolute entropies of C in kJ/kmol K
+s_o2=205.142; // Absolute entropies of o2 in kJ/kmol K
+s_co2=213.795; // Absolute entropies of CO2 in kJ/kmol K
+del_s=s_co2-(s_c+s_o2); // The entropy change
+disp ("kJ/K/kmol C",del_s,"(a).The entropy change = ");
+// (b).Entropy change of universe
+Tsurr=298; // Temperature of surroundings in kelvin
+// From table 14.1
+del_Ho=-393509; // del_hfco2 in kJ/kmol CO2
+Q=abs (del_Ho);
+del_Ssurr=Q/Tsurr; // Entropy change of surroundings
+del_Suniv=del_s+del_Ssurr; //Entropy change of universe
+disp ("kJ/K",del_Suniv,"(b).Entropy change of universe = ");
|