summaryrefslogtreecommitdiff
path: root/20/CH10/EX10.9.407
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /20/CH10/EX10.9.407
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '20/CH10/EX10.9.407')
-rwxr-xr-x20/CH10/EX10.9.407/example10_9_pg407.sce100
-rwxr-xr-x20/CH10/EX10.9.407/example10_9_pg407.txt21
2 files changed, 121 insertions, 0 deletions
diff --git a/20/CH10/EX10.9.407/example10_9_pg407.sce b/20/CH10/EX10.9.407/example10_9_pg407.sce
new file mode 100755
index 000000000..a78d2c752
--- /dev/null
+++ b/20/CH10/EX10.9.407/example10_9_pg407.sce
@@ -0,0 +1,100 @@
+// Example10_9_pg407.sce
+// To find the field excitation required
+// Theory of Alternating Current Machinery by Alexander Langsdorf
+// First Edition 1999, Thirty Second reprint
+// Tata McGraw Hill Publishing Company
+// Example in Page 407
+
+
+clear; clc; close;
+
+// Given data
+va = 2500e+3; // Volt Ampere rating of machine, VA
+vll = 6600; // Line to Line voltage in volts
+N = 3000; // Number of turns
+f = 50; // Frequency in Hz
+slots = 60;
+n = 4;
+poles =2;
+r = 0.073;
+x = 0.87;
+pf1 = 0.8;
+pf2 = 1;
+pf3 = 0;
+phase = 3;
+
+// Calculations
+
+// For 80% power factor
+
+phi = acos(pf1);
+V = vll / sqrt(3);
+I = round(va / (phase*V)) ;
+IR_a = I*r;
+IX_a = I*x;
+V_vec = V*(cos(phi) +%i*sin(phi));
+E = V_vec + I*(r + %i*x);
+E_mag = sqrt(real(E)^2 + imag(E)^2);
+conductors = slots * n;
+turns = conductors/2;
+N_p = turns / (poles * phase);
+q = slots / (poles * phase);
+gama = 360 / slots;
+gama = gama*%pi/2;
+k_b1 = (sin(q*gama/2))/(q*sin(gama/2));
+k_p1 = 1;
+A = (2*sqrt(2)/%pi)*phase*k_b1*k_p1*N_p*I;
+cos_alpha = (real(E)/E_mag);
+sin_alpha = (imag(E)/E_mag);
+alpha = acos(cos_alpha);
+F_r_mag = 17500;
+F_r = F_r_mag*(cos(alpha + %pi/2) + %i*sin(alpha + %pi/2));
+F = F_r - A;
+F_mag = sqrt(real(F)^2 + imag(F)^2);
+disp('The open-circuit voltage corresponding to this excitation, determined from Fig. 10-12, is 4450 volts;');
+oc_volt = 4450;
+regulation80 = ((oc_volt - V)/V)*100;
+printf("\n\nThe regulation for 80%% power factor is %0.1f %% ", regulation80);
+
+// For power factor 1.0
+
+phi = acos(pf2);
+V_vec = V*(cos(phi) +%i*sin(phi));
+E = V_vec + I*(r + %i*x);
+E_mag = sqrt(real(E)^2 + imag(E)^2);
+cos_alpha = (real(E)/E_mag);
+sin_alpha = (imag(E)/E_mag);
+alpha = acos(cos_alpha);
+F_r_mag = 16500;
+F_r = F_r_mag*(cos(alpha + %pi/2) + %i*sin(alpha + %pi/2));
+F = F_r - A;
+F_mag = sqrt(real(F)^2 + imag(F)^2);
+disp('The open-circuit voltage corresponding to this excitation, determined from Fig. 10-12, is 4150 volts;');
+oc_volt = 4150;
+regulation100 = ((oc_volt - V)/V)*100;
+printf("\n\nThe regulation for 100%% power factor is %0.1f %% ", regulation100);
+
+// For power factor 0
+
+phi = acos(pf3);
+E = V + I*(x);
+F_r_mag = 18000;
+F_r = F_r_mag + 11300;
+printf("\nThe value F_R corresponding to Fig 10-12 is %d Volts\n", F_r);
+disp('The open-circuit voltage corresponding to this excitation, determined from Fig. 10-12, is 4500 volts;');
+oc_volt = 4500;
+regulation0 = ((oc_volt - V)/V)*100;
+printf("\nThe regulation for 0%% power factor is %0.1f %% \n", regulation0);
+
+// Result
+// The open-circuit voltage corresponding to this excitation, determined from Fig. 10-12, is 4450 volts;
+//
+// The regulation for 80% power factor is 16.8 %
+// The open-circuit voltage corresponding to this excitation, determined from Fig. 10-12, is 4150 volts;
+//
+// The regulation for 100% power factor is 8.9 %
+// The value F_R corresponding to Fig 10-12 is 29300 Volts
+//
+// The open-circuit voltage corresponding to this excitation, determined from Fig. 10-12, is 4500 volts;
+//
+// The regulation for 0% power factor is 18.1 %
diff --git a/20/CH10/EX10.9.407/example10_9_pg407.txt b/20/CH10/EX10.9.407/example10_9_pg407.txt
new file mode 100755
index 000000000..78a25b005
--- /dev/null
+++ b/20/CH10/EX10.9.407/example10_9_pg407.txt
@@ -0,0 +1,21 @@
+
+-->exec('/home/octav/Techpassion_project_updated_19_June/Codes/Chapter_10/code/example10_9_pg407.sce', -1)
+
+ The open-circuit voltage corresponding to this excitation, determined from
+ Fig. 10-12, is 4450 volts;
+
+
+The regulation for 80% power factor is 16.8 %
+ The open-circuit voltage corresponding to this excitation, determined from
+ Fig. 10-12, is 4150 volts;
+
+
+The regulation for 100% power factor is 8.9 %
+The value F_R corresponding to Fig 10-12 is 29300 Volts
+
+ The open-circuit voltage corresponding to this excitation, determined from
+ Fig. 10-12, is 4500 volts;
+
+The regulation for 0% power factor is 18.1 %
+
+-->diary(0);