From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 20/CH10/EX10.9.407/example10_9_pg407.sce | 100 +++++++++++++++++++++++++++++++ 20/CH10/EX10.9.407/example10_9_pg407.txt | 21 +++++++ 2 files changed, 121 insertions(+) create mode 100755 20/CH10/EX10.9.407/example10_9_pg407.sce create mode 100755 20/CH10/EX10.9.407/example10_9_pg407.txt (limited to '20/CH10/EX10.9.407') diff --git a/20/CH10/EX10.9.407/example10_9_pg407.sce b/20/CH10/EX10.9.407/example10_9_pg407.sce new file mode 100755 index 000000000..a78d2c752 --- /dev/null +++ b/20/CH10/EX10.9.407/example10_9_pg407.sce @@ -0,0 +1,100 @@ +// Example10_9_pg407.sce +// To find the field excitation required +// Theory of Alternating Current Machinery by Alexander Langsdorf +// First Edition 1999, Thirty Second reprint +// Tata McGraw Hill Publishing Company +// Example in Page 407 + + +clear; clc; close; + +// Given data +va = 2500e+3; // Volt Ampere rating of machine, VA +vll = 6600; // Line to Line voltage in volts +N = 3000; // Number of turns +f = 50; // Frequency in Hz +slots = 60; +n = 4; +poles =2; +r = 0.073; +x = 0.87; +pf1 = 0.8; +pf2 = 1; +pf3 = 0; +phase = 3; + +// Calculations + +// For 80% power factor + +phi = acos(pf1); +V = vll / sqrt(3); +I = round(va / (phase*V)) ; +IR_a = I*r; +IX_a = I*x; +V_vec = V*(cos(phi) +%i*sin(phi)); +E = V_vec + I*(r + %i*x); +E_mag = sqrt(real(E)^2 + imag(E)^2); +conductors = slots * n; +turns = conductors/2; +N_p = turns / (poles * phase); +q = slots / (poles * phase); +gama = 360 / slots; +gama = gama*%pi/2; +k_b1 = (sin(q*gama/2))/(q*sin(gama/2)); +k_p1 = 1; +A = (2*sqrt(2)/%pi)*phase*k_b1*k_p1*N_p*I; +cos_alpha = (real(E)/E_mag); +sin_alpha = (imag(E)/E_mag); +alpha = acos(cos_alpha); +F_r_mag = 17500; +F_r = F_r_mag*(cos(alpha + %pi/2) + %i*sin(alpha + %pi/2)); +F = F_r - A; +F_mag = sqrt(real(F)^2 + imag(F)^2); +disp('The open-circuit voltage corresponding to this excitation, determined from Fig. 10-12, is 4450 volts;'); +oc_volt = 4450; +regulation80 = ((oc_volt - V)/V)*100; +printf("\n\nThe regulation for 80%% power factor is %0.1f %% ", regulation80); + +// For power factor 1.0 + +phi = acos(pf2); +V_vec = V*(cos(phi) +%i*sin(phi)); +E = V_vec + I*(r + %i*x); +E_mag = sqrt(real(E)^2 + imag(E)^2); +cos_alpha = (real(E)/E_mag); +sin_alpha = (imag(E)/E_mag); +alpha = acos(cos_alpha); +F_r_mag = 16500; +F_r = F_r_mag*(cos(alpha + %pi/2) + %i*sin(alpha + %pi/2)); +F = F_r - A; +F_mag = sqrt(real(F)^2 + imag(F)^2); +disp('The open-circuit voltage corresponding to this excitation, determined from Fig. 10-12, is 4150 volts;'); +oc_volt = 4150; +regulation100 = ((oc_volt - V)/V)*100; +printf("\n\nThe regulation for 100%% power factor is %0.1f %% ", regulation100); + +// For power factor 0 + +phi = acos(pf3); +E = V + I*(x); +F_r_mag = 18000; +F_r = F_r_mag + 11300; +printf("\nThe value F_R corresponding to Fig 10-12 is %d Volts\n", F_r); +disp('The open-circuit voltage corresponding to this excitation, determined from Fig. 10-12, is 4500 volts;'); +oc_volt = 4500; +regulation0 = ((oc_volt - V)/V)*100; +printf("\nThe regulation for 0%% power factor is %0.1f %% \n", regulation0); + +// Result +// The open-circuit voltage corresponding to this excitation, determined from Fig. 10-12, is 4450 volts; +// +// The regulation for 80% power factor is 16.8 % +// The open-circuit voltage corresponding to this excitation, determined from Fig. 10-12, is 4150 volts; +// +// The regulation for 100% power factor is 8.9 % +// The value F_R corresponding to Fig 10-12 is 29300 Volts +// +// The open-circuit voltage corresponding to this excitation, determined from Fig. 10-12, is 4500 volts; +// +// The regulation for 0% power factor is 18.1 % diff --git a/20/CH10/EX10.9.407/example10_9_pg407.txt b/20/CH10/EX10.9.407/example10_9_pg407.txt new file mode 100755 index 000000000..78a25b005 --- /dev/null +++ b/20/CH10/EX10.9.407/example10_9_pg407.txt @@ -0,0 +1,21 @@ + +-->exec('/home/octav/Techpassion_project_updated_19_June/Codes/Chapter_10/code/example10_9_pg407.sce', -1) + + The open-circuit voltage corresponding to this excitation, determined from + Fig. 10-12, is 4450 volts; + + +The regulation for 80% power factor is 16.8 % + The open-circuit voltage corresponding to this excitation, determined from + Fig. 10-12, is 4150 volts; + + +The regulation for 100% power factor is 8.9 % +The value F_R corresponding to Fig 10-12 is 29300 Volts + + The open-circuit voltage corresponding to this excitation, determined from + Fig. 10-12, is 4500 volts; + +The regulation for 0% power factor is 18.1 % + +-->diary(0); -- cgit