diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1985/CH13 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1985/CH13')
-rwxr-xr-x | 1985/CH13/EX13.2/Chapter13_example2.sce | 14 | ||||
-rwxr-xr-x | 1985/CH13/EX13.3/Chapter13_example3.sce | 14 | ||||
-rwxr-xr-x | 1985/CH13/EX13.5/Chapter13_example5.sce | 18 | ||||
-rwxr-xr-x | 1985/CH13/EX13.6/Chapter13_example6.sce | 23 | ||||
-rwxr-xr-x | 1985/CH13/EX13.7/Chapter13_example7.sce | 12 | ||||
-rwxr-xr-x | 1985/CH13/EX13.8/Chapter13_example8.sce | 15 | ||||
-rwxr-xr-x | 1985/CH13/EX13.9/Chapter13_example9.sce | 12 |
7 files changed, 108 insertions, 0 deletions
diff --git a/1985/CH13/EX13.2/Chapter13_example2.sce b/1985/CH13/EX13.2/Chapter13_example2.sce new file mode 100755 index 000000000..e14c8f675 --- /dev/null +++ b/1985/CH13/EX13.2/Chapter13_example2.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+d=9.6*10^2//Density of sodium in kg/m^3
+a=23//Atomic weight of sodium
+n=2//Number of atoms present in one unit cell in bcc crystal
+x=6.023*10^26//Avagadro constant per kg mole
+
+//Calculations
+m=(n*a)/x//Mass of one unit cell in kg
+a1=(m/d)^(1/3)/10^-10//Lattice constant of sodium angstroms
+
+//Output
+printf('The lattice constant for sodium crystal is %3.1f angstroms',a1)
diff --git a/1985/CH13/EX13.3/Chapter13_example3.sce b/1985/CH13/EX13.3/Chapter13_example3.sce new file mode 100755 index 000000000..c24fe0690 --- /dev/null +++ b/1985/CH13/EX13.3/Chapter13_example3.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+d=4*10^3//Density of CsCl in kg/m^3
+a1=132.9//Atomic weight of Cs
+a2=35.5//Atomic weight of Cl
+a=(4.12*10^-10)//Lattice constant in m
+
+//Calculations
+m=(d*a^3)//Mass of the CsCl unit cell in kg
+N=((a1+a2)/m)/10^26//Avagadro number in 10^26 per kg mole
+
+//Output
+printf('The value of the Avagadro constant is %3.4f*10^26 per kg mole',N)
diff --git a/1985/CH13/EX13.5/Chapter13_example5.sce b/1985/CH13/EX13.5/Chapter13_example5.sce new file mode 100755 index 000000000..831413261 --- /dev/null +++ b/1985/CH13/EX13.5/Chapter13_example5.sce @@ -0,0 +1,18 @@ +clc
+clear
+//Input data
+x=2//Lattice plane cut intercepts of length 2a
+y=3//Lattice plane cut intercepts of length 3b
+z=4//Lattice plane cut intercepts of length 4c
+
+//Calculations
+x1=1/x//Inverse of coefficients
+y1=1/y//Inverse of coefficients
+z1=1/z//Inverse of coefficients
+LCM=12//L.C.M of x,y,z
+x2=(x1*LCM)//Multiplying the fractions by LCM
+y2=(y1*LCM)//Multiplying the fractions by LCM
+z2=(z1*LCM)//Multiplying the fractions by LCM
+
+//Output
+printf('The miller indices of the plane is (%i %i %i)',x2,y2,z2)
diff --git a/1985/CH13/EX13.6/Chapter13_example6.sce b/1985/CH13/EX13.6/Chapter13_example6.sce new file mode 100755 index 000000000..392e5a8fb --- /dev/null +++ b/1985/CH13/EX13.6/Chapter13_example6.sce @@ -0,0 +1,23 @@ +clc
+clear
+//Input data
+p=[1.2,1.8,2]//Primitives of the crystal in angstroms
+m=[2,3,1]//Miller indices of the plane
+x=1.2//Intercept made by the plane along the X-axis
+
+//Calculations
+mx1=1/m(1)//Inverse of the miller indices
+mx2=1/m(2)//Inverse of the miller indices
+mx3=1/m(3)//Inverse of the miller indices
+my1=mx1*6//Multiplying with the L.C.M
+my2=mx2*6//Multiplying with the L.C.M
+my3=mx3*6//Multiplying with the L.C.M
+x1=my1*p(1)//Multiplying with the primitives of the crystal
+x2=my2*p(2)//Multiplying with the primitives of the crystal
+x3=my3*p(3)//Multiplying with the primitives of the crystal
+l2=(x*x2)/x1//Length of intercept along Y axis
+l3=(x*x3)/x1//Length of intercept along Z axis
+
+//Output
+printf('The length of the intercepts made by the plane along Y and Z axes are %3.1f angstroms and %i angstroms',l2,l3)
+
diff --git a/1985/CH13/EX13.7/Chapter13_example7.sce b/1985/CH13/EX13.7/Chapter13_example7.sce new file mode 100755 index 000000000..bea082569 --- /dev/null +++ b/1985/CH13/EX13.7/Chapter13_example7.sce @@ -0,0 +1,12 @@ +clc
+clear
+//Input data
+m=[1,1,0]//Miller indices of the plane
+
+//Calculations
+x=1/m(1)//Inverse of the miller indices
+y=1/m(2)//Inverse of the miller indices
+z=%inf//Inverse of the miller indices, since 1/0 is infinity
+
+//Output
+disp('The intercepts made by the given plane along the Z axis is infinity. It means that the plane is parallel to the Z axis')
diff --git a/1985/CH13/EX13.8/Chapter13_example8.sce b/1985/CH13/EX13.8/Chapter13_example8.sce new file mode 100755 index 000000000..b63584ddc --- /dev/null +++ b/1985/CH13/EX13.8/Chapter13_example8.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+a=4.12*10^-10//Lattice constant in m
+p1=[1,1,1]//Miller indices of the plane 1
+p2=[1,1,2]//Miller indices of the plane 2
+p3=[1,2,3]//Miller indices of the plane 3
+
+//Calculations
+d11=(a/sqrt(p1(1)^2+p1(2)^2+p1(3)^2))/10^-10//The lattice spacing for the plane in m*10^-10
+d12=(a/sqrt(p2(1)^2+p2(2)^2+p2(3)^2))/10^-10//The lattice spacing for the plane in m*10^-10
+d13=(a/sqrt(p3(1)^2+p3(2)^2+p3(3)^2))/10^-10//The lattice spacing for the plane in m*10^-10
+
+//Output
+printf('The lattice spacing for the planes (%i %i %i) is %3.4f*10^-10 m \n The lattice spacing for the planes (%i %i %i) is %3.4f*10^-10 m \n The lattice spacing for the planes (%i %i %i) is %3.4f*10^-10 m',p1(1),p1(2),p1(3),d11,p2(1),p2(2),p2(3),d12,p3(1),p3(2),p3(3),d13)
diff --git a/1985/CH13/EX13.9/Chapter13_example9.sce b/1985/CH13/EX13.9/Chapter13_example9.sce new file mode 100755 index 000000000..474f944f3 --- /dev/null +++ b/1985/CH13/EX13.9/Chapter13_example9.sce @@ -0,0 +1,12 @@ +clc
+clear
+p1=[1,0,0]//Miller indices of the plane 1
+p2=[1,1,0]//Miller indices of the plane 2
+p3=[1,1,1]//Miller indices of the plane 3
+
+d11=(1/sqrt(p1(1)^2+p1(2)^2+p1(3)^2))//The lattice spacing for the plane in m* a
+d12=(1/sqrt(p2(1)^2+p2(2)^2+p2(3)^2))//The lattice spacing for the plane in m* a
+d13=(1/sqrt(p3(1)^2+p3(2)^2+p3(3)^2))//The lattice spacing for the plane in m* a
+
+//Output
+printf('The seperation between the successive plane (%i %i %i), (%i %i %i) and (%i %i %i) are in the ratio of %3.0f : %3.2f : %3.2f',p1(1),p1(2),p1(3),p2(1),p2(2),p2(3),p3(1),p3(2),p3(3),d11,d12,d13)
|