diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1985 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1985')
118 files changed, 1693 insertions, 0 deletions
diff --git a/1985/CH1/EX1.1/chapter1_Example1.sce b/1985/CH1/EX1.1/chapter1_Example1.sce new file mode 100755 index 000000000..8efba1eb1 --- /dev/null +++ b/1985/CH1/EX1.1/chapter1_Example1.sce @@ -0,0 +1,14 @@ +
+clc
+clear
+
+//INPUT DATA
+L=1;//Length of the bar in m
+l=0.25;//Length of the pemdulum in m
+
+//CALCULATIONS
+k=sqrt((L^2)/12);//Radius of gyration m
+T=sqrt(((k^2/l)+l)/9.8)*2*3.14;//Time period of pendulum in s
+
+//OUTPUT
+mprintf('Time period of the pendulum is %3.3f sec',T)
diff --git a/1985/CH1/EX1.2/chapter1_Example2.sce b/1985/CH1/EX1.2/chapter1_Example2.sce new file mode 100755 index 000000000..75b421142 --- /dev/null +++ b/1985/CH1/EX1.2/chapter1_Example2.sce @@ -0,0 +1,13 @@ +
+clc
+clear
+
+//INPUT DATA
+T=2.223;//Time taken for 1 oscillation in sec
+L=1.228;//Length of the pendulum in m
+
+//CALCULATIONS
+g=((4*3.14^2*L)/(T^2));//Acceleration due to gravity in m.s^-2
+
+//OUTPUT
+mprintf('The acceleration due to gravity is %3.2f m s^-2',g)
diff --git a/1985/CH1/EX1.3/chapter1_Example3.sce b/1985/CH1/EX1.3/chapter1_Example3.sce new file mode 100755 index 000000000..9d063382a --- /dev/null +++ b/1985/CH1/EX1.3/chapter1_Example3.sce @@ -0,0 +1,16 @@ +
+clc
+clear
+
+//INPUT DATA
+l=1.2;//Length of of bar in m
+
+//CALCULATIONS
+k=sqrt(l^2/12);//Radius of gyration in m
+T=sqrt(((k^2/(l/2))+(l/2))/9.8)*2*3.14;//Time period of the pendulum in s
+L=((9.8*T^2)/(4*3.14^2));//Length in m
+D=L-(l/2);//Another point where pendulum has same timeperiod in m
+
+//OUTPUT
+mprintf('The time period of pendulum is %3.3f s\nDistance of another point from centre of gravity on bar with same time period is %3.1f m',T,D)
+
diff --git a/1985/CH1/EX1.4/chapter1_Example4.sce b/1985/CH1/EX1.4/chapter1_Example4.sce new file mode 100755 index 000000000..bf03a209a --- /dev/null +++ b/1985/CH1/EX1.4/chapter1_Example4.sce @@ -0,0 +1,14 @@ +
+clc
+clear
+
+//INPUT DATA
+L=1;//Length of pendulum in m
+B=0.05;//Width of pendulum in m
+
+//CALCULATIONS
+k=sqrt((L^2+B^2)/12);//Radius of gyration in m
+D=((L/2)-k)*100;//distance of point of minimum time period from one end in cm
+
+//OUTPUT
+mprintf('The minimum time period is obtained at %3.2f cm',D)
diff --git a/1985/CH10/EX10.1/Chapter10_example1.sce b/1985/CH10/EX10.1/Chapter10_example1.sce new file mode 100755 index 000000000..dd2bad9cf --- /dev/null +++ b/1985/CH10/EX10.1/Chapter10_example1.sce @@ -0,0 +1,16 @@ +clc
+clear
+//Input data
+mU235=235.044//Mass of U235 in a.m.u
+mXe135=134.907//Mass of Xe135 in a.m.u
+mMo98=97.906//Mass of Mo98 in a.m.u
+mn=1.008665//Mass of neutron in a.m.u
+
+//Calculations
+LHS=mU235+mn//The total mass of the reactants in a.m.u
+RHS=mMo98+mXe135+3*mn//The total mass of the products in a.m.u
+md=LHS-RHS//Mass defect in a.m.u
+E=(md*934.18)//Energy released in MeV
+
+//Output
+printf('The energy released in the nuclear fission reaction is %3i MeV',E)
diff --git a/1985/CH10/EX10.2/Chapter10_example2.sce b/1985/CH10/EX10.2/Chapter10_example2.sce new file mode 100755 index 000000000..5e0e5fcd6 --- /dev/null +++ b/1985/CH10/EX10.2/Chapter10_example2.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+E=200//Energy released in the fission of U235 in MeV
+e=1.6*10^-19//Charge of electron in Coulumb
+A=6.023*10^23//Avagadros number
+a=235//U235
+
+//Calculations
+x=(A/a)//Number of atoms in 1 gram of U235
+E=((x*E*e*10^6)/(3.6*10^6))/10^4//Energy released by 1 gm of U235 in kWh
+
+//Output
+printf('Energy released by 1 gm of U235 is %3.2f*10^4 kWh',E)
diff --git a/1985/CH10/EX10.3/Chapter10_example3.sce b/1985/CH10/EX10.3/Chapter10_example3.sce new file mode 100755 index 000000000..2202fcd30 --- /dev/null +++ b/1985/CH10/EX10.3/Chapter10_example3.sce @@ -0,0 +1,12 @@ +clc
+clear
+//Input data
+Ef=200//Energy released per fission in MeV
+Er=32*10^6//Energy produced by the reactor in W
+e=1.6*10^-19//Charge of electron in Coulumb
+
+//Calculations
+n=(Er/(Ef*10^6*e))/10^18//Number of U235 nuclei needed to produce an energy of 32*10^6 J/s *10^18
+
+//Output
+printf('%3.0f*10^18 U235 nuclei are needed to produce an energy of 32*10^6 J/s',n)
diff --git a/1985/CH10/EX10.4/Chapter10_example4.sce b/1985/CH10/EX10.4/Chapter10_example4.sce new file mode 100755 index 000000000..c42178540 --- /dev/null +++ b/1985/CH10/EX10.4/Chapter10_example4.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+E=100*10^3//Energy produced by the reactor in W
+e=1.6*10^-19//Charge of electron in Coulumb
+A=6.023*10^23//Avagadros number
+a=235//U235
+
+//Calculations
+Er=200//Let the energy released per fission be 200 MeV,
+n=(E/(Er*10^6*e))//The number of U235 nuclei needed to produce 100kW of energy
+m=((a*n)/(A*1000))/10^-9//Mass of 'n' atoms of U235
+
+//Output
+printf('The reactor consumes %3.5f*10^-9 kg of U235 in one second',m)
diff --git a/1985/CH10/EX10.5/Chapter10_example5.sce b/1985/CH10/EX10.5/Chapter10_example5.sce new file mode 100755 index 000000000..15d505a6e --- /dev/null +++ b/1985/CH10/EX10.5/Chapter10_example5.sce @@ -0,0 +1,20 @@ +clc
+clear
+//Input data
+n=30//Efficiency of the reactor in percent
+Ef=200//Energy released per fission in MeV
+E=200//Energy needed to the city in MW
+e=1.6*10^-19//Charge of electron in Coulumb
+A=6.023*10^23//Avagadros number
+a=235//U235
+
+//Calculations
+E1=E*10^6//Energy required to the city in J/s
+E2=E1*24*60*60//Energy required to the city for one day in J
+I=(E2/n)*100//Useful input in J
+Ef2=(Ef*10^6*e)//Energy released per fission in J
+n=(I/Ef2)//Number of nucei required to produce 'I' J of energy
+m=((a*n)/(A*1000))//Mass of 'n' atoms of U235 in kg
+
+//Output
+printf('The amount of fuel required for one day operation of he reactor is %3.4f kg',m)
diff --git a/1985/CH10/EX10.6/Chapter10_example6.sce b/1985/CH10/EX10.6/Chapter10_example6.sce new file mode 100755 index 000000000..3e56d7197 --- /dev/null +++ b/1985/CH10/EX10.6/Chapter10_example6.sce @@ -0,0 +1,22 @@ +clc
+clear
+//Input data
+mH=2.01478//Mass of Hydrogen (1H2) in a.m.u
+mHe=4.00388//Mass of Helium (He4) in a.m.u
+n=20//Efficiency in percent
+O=10000//Output of the reactor in kW
+e=1.6*10^-19//Charge of electron in Coulumb
+A=6.023*10^23//Avagadros number
+
+//Calculations
+md=(2*mH-mHe)//Mass defect in a.m.u
+E=(md*931.48)//Energy released in MeV
+O1=(O*1000)//Output of the reactor in J/s
+E1=(O1*24*60*60)//Energy released by the reactor in one day in J
+I=(E1/n)*100//Useful input in J
+N=(I*2/(E*10^6*e))//Number of deuterons required to release an energy of 'I' J
+m=((2*N)/A)//Mass of 'N' atoms of 1H2 in gm
+
+//Output
+printf('The reactor consumes %3.3f*10^-3 kg of deuteron in one day',m)
+
diff --git a/1985/CH10/EX10.7/Chapter10_example7.sce b/1985/CH10/EX10.7/Chapter10_example7.sce new file mode 100755 index 000000000..e849b0f8a --- /dev/null +++ b/1985/CH10/EX10.7/Chapter10_example7.sce @@ -0,0 +1,25 @@ +clc
+clear
+//Input data
+mH1=1.007825//Mass of 1H1 in a.m.u
+mH2=2.014102//Mass of 1H2 in a.m.u
+mHe3=3.01603//Mass of 2He3 in a.m.u
+mHe4=4.002603//Mass of 2He4 in a.m.u
+
+//Calculations
+//For Eq.(i)
+md1=(2*mH1)-mH2//Mass defect in a.m.u. Mass defect in the textbook is wrong since 2*1.007825 is taken as 2.014650 instead of 2.015650
+E1=md1*931.48//Energy released in MeV
+
+//For Eq.(ii)
+md2=(mH1+mH2)-mHe3//Mass defect in a.m.u
+E2=md2*931.48//Energy released in MeV
+
+//For Eq.(iii)
+md3=(2*mHe3-mHe4-2*mH1)//Mass defect in a.m.u. Mass defect in the textbook is wrong since 2*1.007825 is taken as 2.014650 instead of 2.015650
+E3=md3*931.48//Energy released in MeV
+
+E=(E1+E2+E3)//Total energy released in the above reactions in MeV
+
+//Output
+printf('Total energy released in the above reactions is %3.4f MeV',E)
diff --git a/1985/CH11/EX11.1/Chapter11_Example1.sce b/1985/CH11/EX11.1/Chapter11_Example1.sce new file mode 100755 index 000000000..16909c80e --- /dev/null +++ b/1985/CH11/EX11.1/Chapter11_Example1.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+h=6.625*10^-34//Plancks constant in J.s
+e=(1.6*10^-19)//Charge of the electron in C
+c=(3*10^8)//Velocity of light in m/s
+V=(10*10^3)//Potential difference applied in V
+
+//Calculations
+lmin=(12400/V)//The wavelength of X-rays emitted in angstroms
+v=(c/(lmin*10^-10))/10^18//Frequency of the X-ray beam emitted in Hz*10^18
+
+//Output
+printf('The shortest wavelength of X-rays produced by an X-ray tube is %3.2f angstroms \n The frequency of the X-ray beam emitted is %3.3f*10^18 Hz',lmin,v)
diff --git a/1985/CH11/EX11.2/Chapter11_Example2.sce b/1985/CH11/EX11.2/Chapter11_Example2.sce new file mode 100755 index 000000000..fe6640f99 --- /dev/null +++ b/1985/CH11/EX11.2/Chapter11_Example2.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+V=10*1000//Potential difference applied in V
+I=2*10^-3//Current in A
+e=(1.6*10^-19)//Charge of the electron in C
+m=9.1*10^-31//Mass of the electron in kg
+
+//Calculations
+n=(I/e)/10^16//Number of electrons striking the target per second *10^16
+v=sqrt((2*e*V)/m)/10^7//Velocity of the electron in m/s*10^7
+lmin=12400/V//Wavelength of the X-rays in angstroms
+
+//Output
+printf('Number of electrons striking the target per second is %3.2f*10^16 \n Velocity of the electron is %3.2f*10^7 m/s \n Wavelength of the X-rays is %3.2f angstroms',n,v,lmin)
diff --git a/1985/CH11/EX11.3/Chapter11_Example3.sce b/1985/CH11/EX11.3/Chapter11_Example3.sce new file mode 100755 index 000000000..7812a093c --- /dev/null +++ b/1985/CH11/EX11.3/Chapter11_Example3.sce @@ -0,0 +1,17 @@ +
+clc
+clear
+//Input data
+d=5.6534*10^-10//Interplanar spacing in m
+q1=13.666//Glacing angle in degrees
+n1=1//Order of diffraction
+n2=2//Order of diffraction
+
+//Calculations
+l=((2*d*sind(q1))/n1)/10^-10//Wavelength in m*10^-10
+q2=asind((n2*l*10^-10)/(2*d))//Angle for the second order in degrees
+qzx=(q2-(int(q2)))*60//For output
+qzy=(qzx-(int(qzx)))*60//For output
+
+//Output
+printf('(a) The wavelength of the X-rays is %3.3f*10^-10 m \n (b) The angle for the second order Bragg reflection is %3.0f degrees %3.0f minutes %3.2f seconds',l,q2,qzx,qzy)
diff --git a/1985/CH11/EX11.4/Chapter11_Example4.sce b/1985/CH11/EX11.4/Chapter11_Example4.sce new file mode 100755 index 000000000..23477624e --- /dev/null +++ b/1985/CH11/EX11.4/Chapter11_Example4.sce @@ -0,0 +1,18 @@ +
+clc
+clear
+//Input data
+V=24800//Potential difference applied in V
+n=1//Order of diffraction
+l=1.54*10^-10//Wavelength of X-ray beam in m
+q=15.8//Glancing angle in degrees
+
+//Calculations
+d=((n*l)/(2*sind(q)))/10^-10//Interplanar spacing in m
+lmin=12400/V//Minimum wavelength of X-rays emitted in angstroms
+q=asind((n*lmin*10^-10)/(2*d*10^-10))//Glancing angle for minimum wavelength in degrees
+qx=(q-int(q))*60//For output
+qy=(qx-int(qx))*60//For output
+
+//Output
+printf('The grating spaing for NaCl crystal is %3.3f angstroms \n Glancing angle for minimum wavelength is %3.0f degrees %3.0f minutes %3.0f seconds',d,q,qx,qy)
diff --git a/1985/CH11/EX11.5/Chapter11_Example5.sce b/1985/CH11/EX11.5/Chapter11_Example5.sce new file mode 100755 index 000000000..3aa00f638 --- /dev/null +++ b/1985/CH11/EX11.5/Chapter11_Example5.sce @@ -0,0 +1,12 @@ +clc
+clear
+//Input data
+l=0.7078//Wavelength of X-rays in m
+ZMo=42//Atomic number of molybdenum
+ZCd=48//Atomic number of cadmium
+
+//Calculations
+lCd=(l)*((ZMo-1)^2/(ZCd-1)^2)//Wavelength of Cadmium radiation in angstroms
+
+//Output
+printf('The wavelength of cadmium radiation is %3.4f angstroms',lCd)
diff --git a/1985/CH11/EX11.6/Chapter11_Example6.sce b/1985/CH11/EX11.6/Chapter11_Example6.sce new file mode 100755 index 000000000..45b8fa949 --- /dev/null +++ b/1985/CH11/EX11.6/Chapter11_Example6.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+q=60//Angle of scattering in degrees
+l=1.24//Wavelength of X-rays in angstroms
+m=9.1*10^-31//Mass of the electron in kg
+h=6.625*10^-34//Plancks constant in J.s
+c=(3*10^8)//Velocity of light in m/s
+
+//Calculations
+dl=((h*(1-cosd(q)))/(m*c))/10^-10//The Compton angle in degrees
+
+//Output
+printf('The Compton shift is %3.3f angstroms',dl)
diff --git a/1985/CH11/EX11.7/Chapter11_Example7.sce b/1985/CH11/EX11.7/Chapter11_Example7.sce new file mode 100755 index 000000000..87b96217b --- /dev/null +++ b/1985/CH11/EX11.7/Chapter11_Example7.sce @@ -0,0 +1,16 @@ +clc
+clear
+//Input data
+l=0.112*10^-9//Wavelength of X-rays in m
+q=90//Angle of scattering in degrees
+m=9.1*10^-31//Mass of the electron in kg
+h=6.625*10^-34//Plancks constant in J.s
+c=(3*10^8)//Velocity of light in m/s
+
+//Calculations
+dl=((h*(1-cosd(q)))/(m*c))/10^-10//The Compton angle in degrees
+l1=(dl+(l/10^-10))//Wavelength of the X-rays scattered at an agle of 90 degrees in angstroms
+dE=((h*c*((1/l)-(1/(l1*10^-10)))))/10^-17//The energy of the recoiling electron in J*10^-17
+
+//Output
+printf('(a) Wavelength of the X-rays scattered at an agle of 90 degrees with respect to the original direction is %3.3f angstroms \n (b) The energy of the scattering electron after the collision is %3.2f*10^-17 J',l1,dE)
diff --git a/1985/CH12/EX12.1/Chapter12_example1.sce b/1985/CH12/EX12.1/Chapter12_example1.sce new file mode 100755 index 000000000..315857a35 --- /dev/null +++ b/1985/CH12/EX12.1/Chapter12_example1.sce @@ -0,0 +1,13 @@ +clc
+clear
+//Input data
+E=10//Energy of the photon in eV
+h=6.625*10^-34//Plancks constant in J.s
+c=3*10^8//Velocity of light in m/s
+e=1.6*10^-19//Charge of electron in Columbs
+
+//Calculations
+l=((h*c)/(E*e))/10^-10//Wavelength of the photon in angstroms
+
+//Output
+printf('The wavelength of the photon is %3.0f angstroms',l)
diff --git a/1985/CH12/EX12.10/Chapter12_example10.sce b/1985/CH12/EX12.10/Chapter12_example10.sce new file mode 100755 index 000000000..a77bd7b41 --- /dev/null +++ b/1985/CH12/EX12.10/Chapter12_example10.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+W=2.4//Work function in eV
+l=6000*10^-10//Wavelength of the light in m
+h=6.625*10^-34//Plancks constant in J.s
+c=3*10^8//Velocity of light in m/s
+e=1.6*10^-19//Charge of electron in Columbs
+
+//Calculations
+vo=((W*e)/h)/10^14//Threshold frequency in Hz*10^14
+v=(c/l)/10^14//Frequency of incident light in Hz*10^14
+
+//Output
+printf('Threshold frequency is %3.3f*10^14 Hz and Frequency of incident light is %i*10^14 Hz \n Since v<vo the photoelectric effect is not possible',vo,v)
diff --git a/1985/CH12/EX12.11/Chapter12_example11.sce b/1985/CH12/EX12.11/Chapter12_example11.sce new file mode 100755 index 000000000..3f9d289a0 --- /dev/null +++ b/1985/CH12/EX12.11/Chapter12_example11.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+l=2500*10^-10//Wavelength of light used in m
+W=4.2//Workfunction of aluminium in eV
+h=6.625*10^-34//Plancks constant in J.s
+c=3*10^8//Velocity of light in m/s
+e=1.6*10^-19//Charge of electron in Columbs
+
+//Calculations
+KE=((h*c/l)-(W*e))/10^-19//Kinetic energy of the photoelectron in J*10^-19
+Vs=(KE*10^-19/e)//Stopping potential in V
+
+//Output
+printf('The K.E of the fastest moving electron is %3.2f*10^-19 J \n The stopping potential is %3.5f V',KE,Vs)
diff --git a/1985/CH12/EX12.2/Chapter12_example2.sce b/1985/CH12/EX12.2/Chapter12_example2.sce new file mode 100755 index 000000000..3ae8f067b --- /dev/null +++ b/1985/CH12/EX12.2/Chapter12_example2.sce @@ -0,0 +1,12 @@ +clc
+clear
+//Input data
+E=3//Energy of photon in eV
+c=3*10^8//Velocity of light in m/s
+e=1.6*10^-19//Charge of electron in Columbs
+
+//Calculations
+p=((E*e)/c)/10^-27//The momentum of the photon in kg.m/s
+
+//Output
+printf('The momentum of the photon is %3.1f*10^-27 kg.m/s',p)
diff --git a/1985/CH12/EX12.3/Chapter12_example3.sce b/1985/CH12/EX12.3/Chapter12_example3.sce new file mode 100755 index 000000000..f694325cf --- /dev/null +++ b/1985/CH12/EX12.3/Chapter12_example3.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+l=6*10^-7//Wavelength of the photon in m
+P=2//Power of lamp in W
+h=6.625*10^-34//Plancks constant in J.s
+c=3*10^8//Velocity of light in m/s
+
+//Calculations
+E=((h*c)/l)/10^-19//Energy of photon in J*10^-19
+n=(P/(E*10^-19))/10^18//The number of photons emitted per second*10^18
+
+//Output
+printf('The number of photons emitted per second is %3.4f*10^18',n)
diff --git a/1985/CH12/EX12.4/Chapter12_example4.sce b/1985/CH12/EX12.4/Chapter12_example4.sce new file mode 100755 index 000000000..fd3e92a03 --- /dev/null +++ b/1985/CH12/EX12.4/Chapter12_example4.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+l=1*10^-10//Wavelength of the x-ray in m
+P=1*1000//Output power in W
+h=6.625*10^-34//Plancks constant in J.s
+c=3*10^8//Velocity of light in m/s
+
+//Calculations
+E=((h*c)/l)/10^-15//Energy of the photon in J*10^-15
+n=(P/(E*10^-15))/10^17//The number of photons emitted per second*10^17
+
+//Output
+printf('The number of photons emitted per second is %3.4f*10^17',n)
diff --git a/1985/CH12/EX12.5/Chapter12_example5.sce b/1985/CH12/EX12.5/Chapter12_example5.sce new file mode 100755 index 000000000..21bb3b3b4 --- /dev/null +++ b/1985/CH12/EX12.5/Chapter12_example5.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+W=2.2//Work function of sodium in eV
+h=6.625*10^-34//Plancks constant in J.s
+c=3*10^8//Velocity of light in m/s
+e=1.6*10^-19//Charge of electron in Columbs
+
+//Calculations
+v=(W*e)/h//Frequency in Hz
+l=(c/v)/10^-10//The threshold wavelength in angstroms
+
+//Output
+printf('The threshold wavelength of the metal is %3.0f angstroms',l)
diff --git a/1985/CH12/EX12.6/Chapter12_example6.sce b/1985/CH12/EX12.6/Chapter12_example6.sce new file mode 100755 index 000000000..6b5766d6b --- /dev/null +++ b/1985/CH12/EX12.6/Chapter12_example6.sce @@ -0,0 +1,17 @@ +clc
+clear
+//Input data
+W=3.6//Work function of zinc in eV
+l=2000*10^-10//Wavelength of light used in m
+h=6.625*10^-34//Plancks constant in J.s
+c=3*10^8//Velocity of light in m/s
+e=1.6*10^-19//Charge of electron in Columbs
+m=9.1*10^-31//Mass of the electron in kg
+
+//Calculations
+lo=((h*c)/(W*e))//Threshold wavelength of zinc in m
+KE=((h*c*(lo-l))/(lo*l*e))//Kinetic energy of the photoelectrons in eV
+v=(sqrt((2*KE*e)/m))/10^5//Velocity of photoelectrons in m/s*10^5
+
+//Output
+printf('The kinetic energy of the photoelectrons emitted is %3.2f eV \n The velocity of the ejected photoelectrons is %3.2f*10^5 m/s',KE,v)
diff --git a/1985/CH12/EX12.7/Chapter12_example7.sce b/1985/CH12/EX12.7/Chapter12_example7.sce new file mode 100755 index 000000000..c32a46396 --- /dev/null +++ b/1985/CH12/EX12.7/Chapter12_example7.sce @@ -0,0 +1,13 @@ +clc
+clear
+//Input data
+lo=3200*10^-10//Threshold wavelength in m
+h=6.625*10^-34//Plancks constant in J.s
+c=3*10^8//Velocity of light in m/s
+e=1.6*10^-19//Charge of electron in Columbs
+
+//Calculations
+W=((h*c)/(lo*e))//Work function of platinum in eV
+
+//Output
+printf('The photoelectric workfunction for platinum is %3.4f eV',W)
diff --git a/1985/CH12/EX12.8/Chapter12_example8.sce b/1985/CH12/EX12.8/Chapter12_example8.sce new file mode 100755 index 000000000..8b1e9320c --- /dev/null +++ b/1985/CH12/EX12.8/Chapter12_example8.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+lo=6000*10^-10//Threshold wavelength in m
+l=3600*10^-10//Wavelength of the light used in m
+h=6.625*10^-34//Plancks constant in J.s
+c=3*10^8//Velocity of light in m/s
+e=1.6*10^-19//Charge of electron in Columbs
+
+//Calculations
+E=(h*c*((1/l)-(1/lo)))/e//Energy of the photoelectrons emitted in eV
+
+//Output
+printf('Energy of the photoelectrons emitted is %3.2f eV',E)
diff --git a/1985/CH12/EX12.9/Chapter12_example9.sce b/1985/CH12/EX12.9/Chapter12_example9.sce new file mode 100755 index 000000000..50e20f8f4 --- /dev/null +++ b/1985/CH12/EX12.9/Chapter12_example9.sce @@ -0,0 +1,11 @@ +clc
+clear
+//Input data
+W=1.9//Work function in eV
+E=3//Energy of the emitted photons in eV
+
+//Calculations
+V=(E-W)//Stopping potential in V
+
+//Output
+printf('The stopping potential is %3.1f V',V)
diff --git a/1985/CH13/EX13.2/Chapter13_example2.sce b/1985/CH13/EX13.2/Chapter13_example2.sce new file mode 100755 index 000000000..e14c8f675 --- /dev/null +++ b/1985/CH13/EX13.2/Chapter13_example2.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+d=9.6*10^2//Density of sodium in kg/m^3
+a=23//Atomic weight of sodium
+n=2//Number of atoms present in one unit cell in bcc crystal
+x=6.023*10^26//Avagadro constant per kg mole
+
+//Calculations
+m=(n*a)/x//Mass of one unit cell in kg
+a1=(m/d)^(1/3)/10^-10//Lattice constant of sodium angstroms
+
+//Output
+printf('The lattice constant for sodium crystal is %3.1f angstroms',a1)
diff --git a/1985/CH13/EX13.3/Chapter13_example3.sce b/1985/CH13/EX13.3/Chapter13_example3.sce new file mode 100755 index 000000000..c24fe0690 --- /dev/null +++ b/1985/CH13/EX13.3/Chapter13_example3.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+d=4*10^3//Density of CsCl in kg/m^3
+a1=132.9//Atomic weight of Cs
+a2=35.5//Atomic weight of Cl
+a=(4.12*10^-10)//Lattice constant in m
+
+//Calculations
+m=(d*a^3)//Mass of the CsCl unit cell in kg
+N=((a1+a2)/m)/10^26//Avagadro number in 10^26 per kg mole
+
+//Output
+printf('The value of the Avagadro constant is %3.4f*10^26 per kg mole',N)
diff --git a/1985/CH13/EX13.5/Chapter13_example5.sce b/1985/CH13/EX13.5/Chapter13_example5.sce new file mode 100755 index 000000000..831413261 --- /dev/null +++ b/1985/CH13/EX13.5/Chapter13_example5.sce @@ -0,0 +1,18 @@ +clc
+clear
+//Input data
+x=2//Lattice plane cut intercepts of length 2a
+y=3//Lattice plane cut intercepts of length 3b
+z=4//Lattice plane cut intercepts of length 4c
+
+//Calculations
+x1=1/x//Inverse of coefficients
+y1=1/y//Inverse of coefficients
+z1=1/z//Inverse of coefficients
+LCM=12//L.C.M of x,y,z
+x2=(x1*LCM)//Multiplying the fractions by LCM
+y2=(y1*LCM)//Multiplying the fractions by LCM
+z2=(z1*LCM)//Multiplying the fractions by LCM
+
+//Output
+printf('The miller indices of the plane is (%i %i %i)',x2,y2,z2)
diff --git a/1985/CH13/EX13.6/Chapter13_example6.sce b/1985/CH13/EX13.6/Chapter13_example6.sce new file mode 100755 index 000000000..392e5a8fb --- /dev/null +++ b/1985/CH13/EX13.6/Chapter13_example6.sce @@ -0,0 +1,23 @@ +clc
+clear
+//Input data
+p=[1.2,1.8,2]//Primitives of the crystal in angstroms
+m=[2,3,1]//Miller indices of the plane
+x=1.2//Intercept made by the plane along the X-axis
+
+//Calculations
+mx1=1/m(1)//Inverse of the miller indices
+mx2=1/m(2)//Inverse of the miller indices
+mx3=1/m(3)//Inverse of the miller indices
+my1=mx1*6//Multiplying with the L.C.M
+my2=mx2*6//Multiplying with the L.C.M
+my3=mx3*6//Multiplying with the L.C.M
+x1=my1*p(1)//Multiplying with the primitives of the crystal
+x2=my2*p(2)//Multiplying with the primitives of the crystal
+x3=my3*p(3)//Multiplying with the primitives of the crystal
+l2=(x*x2)/x1//Length of intercept along Y axis
+l3=(x*x3)/x1//Length of intercept along Z axis
+
+//Output
+printf('The length of the intercepts made by the plane along Y and Z axes are %3.1f angstroms and %i angstroms',l2,l3)
+
diff --git a/1985/CH13/EX13.7/Chapter13_example7.sce b/1985/CH13/EX13.7/Chapter13_example7.sce new file mode 100755 index 000000000..bea082569 --- /dev/null +++ b/1985/CH13/EX13.7/Chapter13_example7.sce @@ -0,0 +1,12 @@ +clc
+clear
+//Input data
+m=[1,1,0]//Miller indices of the plane
+
+//Calculations
+x=1/m(1)//Inverse of the miller indices
+y=1/m(2)//Inverse of the miller indices
+z=%inf//Inverse of the miller indices, since 1/0 is infinity
+
+//Output
+disp('The intercepts made by the given plane along the Z axis is infinity. It means that the plane is parallel to the Z axis')
diff --git a/1985/CH13/EX13.8/Chapter13_example8.sce b/1985/CH13/EX13.8/Chapter13_example8.sce new file mode 100755 index 000000000..b63584ddc --- /dev/null +++ b/1985/CH13/EX13.8/Chapter13_example8.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+a=4.12*10^-10//Lattice constant in m
+p1=[1,1,1]//Miller indices of the plane 1
+p2=[1,1,2]//Miller indices of the plane 2
+p3=[1,2,3]//Miller indices of the plane 3
+
+//Calculations
+d11=(a/sqrt(p1(1)^2+p1(2)^2+p1(3)^2))/10^-10//The lattice spacing for the plane in m*10^-10
+d12=(a/sqrt(p2(1)^2+p2(2)^2+p2(3)^2))/10^-10//The lattice spacing for the plane in m*10^-10
+d13=(a/sqrt(p3(1)^2+p3(2)^2+p3(3)^2))/10^-10//The lattice spacing for the plane in m*10^-10
+
+//Output
+printf('The lattice spacing for the planes (%i %i %i) is %3.4f*10^-10 m \n The lattice spacing for the planes (%i %i %i) is %3.4f*10^-10 m \n The lattice spacing for the planes (%i %i %i) is %3.4f*10^-10 m',p1(1),p1(2),p1(3),d11,p2(1),p2(2),p2(3),d12,p3(1),p3(2),p3(3),d13)
diff --git a/1985/CH13/EX13.9/Chapter13_example9.sce b/1985/CH13/EX13.9/Chapter13_example9.sce new file mode 100755 index 000000000..474f944f3 --- /dev/null +++ b/1985/CH13/EX13.9/Chapter13_example9.sce @@ -0,0 +1,12 @@ +clc
+clear
+p1=[1,0,0]//Miller indices of the plane 1
+p2=[1,1,0]//Miller indices of the plane 2
+p3=[1,1,1]//Miller indices of the plane 3
+
+d11=(1/sqrt(p1(1)^2+p1(2)^2+p1(3)^2))//The lattice spacing for the plane in m* a
+d12=(1/sqrt(p2(1)^2+p2(2)^2+p2(3)^2))//The lattice spacing for the plane in m* a
+d13=(1/sqrt(p3(1)^2+p3(2)^2+p3(3)^2))//The lattice spacing for the plane in m* a
+
+//Output
+printf('The seperation between the successive plane (%i %i %i), (%i %i %i) and (%i %i %i) are in the ratio of %3.0f : %3.2f : %3.2f',p1(1),p1(2),p1(3),p2(1),p2(2),p2(3),p3(1),p3(2),p3(3),d11,d12,d13)
diff --git a/1985/CH14/EX14.1/Chapter14_example1.sce b/1985/CH14/EX14.1/Chapter14_example1.sce new file mode 100755 index 000000000..297188afa --- /dev/null +++ b/1985/CH14/EX14.1/Chapter14_example1.sce @@ -0,0 +1,11 @@ +clc
+clear
+s=5.87*10^7//Electrical conductivity of Cu in ohm^-1.m^-1
+K=390//Thermal conductivity of Cu in W/m.K
+T=(20+273)//Temperature in K
+
+//Calculations
+L=(K/(s*T))/10^-8//Lorentz number in W.ohm/K^2
+
+//Calculations
+printf('Lorentz number is %3.3f*10^-8 W.ohm/K^2',L)
diff --git a/1985/CH14/EX14.2/Chapter14_example2.sce b/1985/CH14/EX14.2/Chapter14_example2.sce new file mode 100755 index 000000000..167385ef3 --- /dev/null +++ b/1985/CH14/EX14.2/Chapter14_example2.sce @@ -0,0 +1,17 @@ +clc
+clear
+//Input data
+t=10^-14//Relaxation time in s
+T=300//Temperature in K
+n=6*10^28//Electron concentration in m^-3
+e=1.6*10^-19//Electron charge in Columbs
+m=9.1*10^-31//Mass of electron in kg
+kB=1.38*10^-23//Boltzmann constant in J/K
+
+//Calculations
+s=((n*e^2*t)/m)/10^7//Electrical conductivity in ohm^-1.m^-1 *10^7
+K=((n*3.14^2*kB^2*T*t)/(3*m))//Thermal conductivity in W/m.K
+L=(K/(s*10^7*T))/10^-8//Lorentz number in W.ohm/K^2 *10^-8
+
+//Output
+printf('Electrical conductivity is %3.4f*10^7 ohm^-1.m^-1 \n Thermal conductivity is %3.4f W/m.K \n Lorentz number is %3.4f*10^-8 W.ohm/K^2',s,K,L)
diff --git a/1985/CH14/EX14.3/Chapter14_example3.sce b/1985/CH14/EX14.3/Chapter14_example3.sce new file mode 100755 index 000000000..60fd12daa --- /dev/null +++ b/1985/CH14/EX14.3/Chapter14_example3.sce @@ -0,0 +1,16 @@ +clc
+clear
+//Input data
+d=8900//Density of copper in kg/m^3
+a=63.5//Atomic weight of Cu
+t=10^-14//Relaxation time in s
+A=6.023*10^26//Avagadro number per mole
+e=1.6*10^-19//Electron charge in Columbs
+m=9.1*10^-31//Mass of electron in kg
+
+//Calculations
+n=(A*d)/a//Concentration of free electrons in m^-3
+s=((n*e^2*t)/m)/10^7//Electrical conductivity in ohm^-1.m^-1 *10^7
+
+//Output
+printf('The electrical conductivity is %3.4f*10^7 ohm^-1.m^-1',s)
diff --git a/1985/CH14/EX14.4/Chapter14_example4.sce b/1985/CH14/EX14.4/Chapter14_example4.sce new file mode 100755 index 000000000..d9e45bf02 --- /dev/null +++ b/1985/CH14/EX14.4/Chapter14_example4.sce @@ -0,0 +1,19 @@ +clc
+clear
+//Input data
+r=1.54*10^-8//Resistivity in ohm.m
+Ef=5.5//Fermi energy in eV
+n=5.8*10^28//Concentration of electrons in m^-3
+E=100//Electric field applied n V/m
+e=1.6*10^-19//Electron charge in Columbs
+m=9.1*10^-31//Mass of electron in kg
+
+//Calculations
+t=(m/(r*n*e^2))/10^-14//Relaxation time in s*10^-14
+u=((e*t*10^-14)/m)/10^-3//Mobility of the electron in m^2.V^-1.s^-1*10^-3
+v=(e*t*10^-14*E)/m//Drift velocity in m/s
+vf=(sqrt((2*Ef*e)/m))/10^6//Fermi velocity in m/s*10^6
+l=(vf*10^6*t*10^-14)/10^-8//Mean free path in m*10^-8
+
+//Output
+printf('The relaxation time of electrons is %3.2f*10^-14 s \n The mobility of the electrons is %3.2f*10^-3 m^2.V^-1.s^-1 \n The drift velocity of electrons is %3.3f m/s \n The fermi velocity of electrons is %3.2f*10^6 m/s \n The mean free path is %3.2f*10^-8 m',t,u,v,vf,l)
diff --git a/1985/CH14/EX14.5/Chapter14_example5.sce b/1985/CH14/EX14.5/Chapter14_example5.sce new file mode 100755 index 000000000..5341a0d98 --- /dev/null +++ b/1985/CH14/EX14.5/Chapter14_example5.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+C=(2*10^-6)//Capacitance in F
+er=80//Permitivity of the dielectric
+V=1000//Applied voltage in V
+
+//Calculations
+E1=(1/2)*C*V^2//Energy stored in the capacitor in Joule
+Co=C/er//Capacitance of the capacitor when the dielectric is removed in F
+E2=(1/2)*Co*V^2//Energy stored in the capacitor with vacuum as dielectric in J
+E=E1-E2//Energy stored in the capacitor in polarizing the dielectric in J
+
+//Output
+printf('Energy stored in the capacitor is %i J \n The energy stored in the capacitor in polarizing the capacitor is %3.4f J',E1,E)
diff --git a/1985/CH14/EX14.6/Chapter14_example6.sce b/1985/CH14/EX14.6/Chapter14_example6.sce new file mode 100755 index 000000000..820d90ad8 --- /dev/null +++ b/1985/CH14/EX14.6/Chapter14_example6.sce @@ -0,0 +1,12 @@ +clc
+clear
+//Input data
+N=5*10^28//Number of atoms present per m^3
+a=2*10^-40//polarizability in F.m^2
+eo=8.854*10^-12//permittivity of free space in F/m
+
+//Calculations
+E=1/(1-((N*a)/(3*eo)))//Ratio of the internal field to the applied field
+
+//Output
+printf('Ratio of the internal field to the applied field is %3.4f',E)
diff --git a/1985/CH14/EX14.7/Chapter14_example7.sce b/1985/CH14/EX14.7/Chapter14_example7.sce new file mode 100755 index 000000000..242dede47 --- /dev/null +++ b/1985/CH14/EX14.7/Chapter14_example7.sce @@ -0,0 +1,13 @@ +clc
+clear
+//Input data
+M=2300//Magnetization in A/m
+B=0.00314//Flux density in Wb/m^2
+uo=(4*3.14)*10^-7//Permeability of free space in H/m
+
+//Calculations
+H=(B/uo)-M//Magnetizing force in A/m
+ur=(M/H)+1//Relative permeability
+
+//Output
+printf('The magnetizing force is %3.0f A/m \n The relative permeability is %3.1f',H,ur)
diff --git a/1985/CH14/EX14.8/Chapter14_example8.sce b/1985/CH14/EX14.8/Chapter14_example8.sce new file mode 100755 index 000000000..b39f51ee2 --- /dev/null +++ b/1985/CH14/EX14.8/Chapter14_example8.sce @@ -0,0 +1,13 @@ +clc
+clear
+//Input data
+H=10^4//Magnetic field intensity in A/m
+s=3.7*10^-3//Susceptibility
+uo=(4*3.14)*10^-7//Permeability of free space in H/m
+
+//Calculations
+M=s*H//Magnetization n A/m. The textbook answer is given as 370 A/m which is wrong.
+B=(uo*(M+H))/10^-2//Flux density in Wb/m^2 *10^-2
+
+//Output
+printf('Magnetization in the material is %3.0f A/m \n The flux density in the material is %3.5f*10^-2 Wb/m^2',M,B)
diff --git a/1985/CH14/EX14.9/Chapter14_example9.sce b/1985/CH14/EX14.9/Chapter14_example9.sce new file mode 100755 index 000000000..bd5c2fc36 --- /dev/null +++ b/1985/CH14/EX14.9/Chapter14_example9.sce @@ -0,0 +1,18 @@ +clc
+clear
+//Input data
+a=2.5*10^-10//Interatomic spacing in m
+M=(1.8*10^6)//Magnetization in Wb/m^2
+n=2//Number of atoms per unit cell in bcc crystal
+e=1.6*10^-19//Electron charge in Columbs
+m=9.1*10^-31//Mass of electron in kg
+h=6.625*10^-34//Plancks constant in J.s
+
+//Calculations
+N=(n/a^3)//Number of atoms present per unit volume in m^-3
+m1=(M/N)//Total magnetization produced per atom in A/m^2
+b=(e*h)/(4*3.14*m)//Bohr magnetron
+M1=(m1/b)//Magnetization produced per atom in Bohr magnetron
+
+//Output
+printf('The average magnetization contributed per atom is %3.6f Bohr magneton',M1)
diff --git a/1985/CH15/EX15.1/Chapter15_example1.sce b/1985/CH15/EX15.1/Chapter15_example1.sce new file mode 100755 index 000000000..9fdad6918 --- /dev/null +++ b/1985/CH15/EX15.1/Chapter15_example1.sce @@ -0,0 +1,11 @@ +clc
+clear
+//Input data
+d=10*10^8//Difference between the principal stress in N/m^2
+c=(1*10^-12)//Stress-optic coefficient in m^2/N
+
+//Calculations
+N=(c*d)//Difference between the refractive indices
+
+//Output
+printf('The difference between the refractive indices along the principal stresses is %3.3f',N)
diff --git a/1985/CH15/EX15.2/Chapter15_example2.sce b/1985/CH15/EX15.2/Chapter15_example2.sce new file mode 100755 index 000000000..7991e3b42 --- /dev/null +++ b/1985/CH15/EX15.2/Chapter15_example2.sce @@ -0,0 +1,11 @@ +clc
+clear
+//Input data
+s1=(405*10^6)//Principal stress in N/m^2
+s2=(-105*10^6)//Principal stress in N/m^2
+
+//Calculations
+tmax=((s1-s2)/2)/10^6//Maximum shearing stress in N/m^2 *10^6
+
+//Output
+printf('The maximum shearing stress is %3.0f*10^6 N/m^2',tmax)
diff --git a/1985/CH16/EX16.1/Chapter16_example1.sce b/1985/CH16/EX16.1/Chapter16_example1.sce new file mode 100755 index 000000000..4bf4c5e54 --- /dev/null +++ b/1985/CH16/EX16.1/Chapter16_example1.sce @@ -0,0 +1,13 @@ +clc
+clear
+//Input data
+T1=(75+273)//Initial temperature in K
+T2=(60+273)//Final temperature in K
+T0=(30+273)//Surrounding temperature in K
+t1=(5*60)//Time taken by the liquid to cool from 75 degrees C to 60 degrees C
+
+//Calculations
+T3=(T2-T0)^2/(T1-T0)+T0//The temperature of the body after the next 5 minutes in K
+
+//Output
+printf('The temperature of the body after the next 5 minutes is %3.0f K',T3)
diff --git a/1985/CH16/EX16.2/Chapter16_example2.sce b/1985/CH16/EX16.2/Chapter16_example2.sce new file mode 100755 index 000000000..7e40ad7d3 --- /dev/null +++ b/1985/CH16/EX16.2/Chapter16_example2.sce @@ -0,0 +1,18 @@ +clc
+clear
+//Input data
+T1=(50+273)//Initial temperature of the liquid in K
+M1=0.1//Mass of water in kg
+T2=(40+273)//Final temperature of the liquid in K
+t1=(5*60)//Time taken by the water to cool from 50 degrees C to 40 degrees C
+M2=0.085//Mass of the liquid in kg
+M=0.1//Mass of the calorimeter in kg
+t2=(2*60)//Time taken by the liquid to cool from 50 degrees C to 40 degrees C
+S=385//Specific heat of the calorimeter in J/kg.K
+S1=4190//Specific heat of the water in J/kg.K
+
+//Calculations
+S2=(((M1*S1+M*S)*(t2/t1))-(M*S))/M2//Specific heat of the liquid in J/kg.K
+
+//Output
+printf('Specific heat of the liquid is %3.0f J/kg.K',S2)
diff --git a/1985/CH16/EX16.3/Chapter16_example3.sce b/1985/CH16/EX16.3/Chapter16_example3.sce new file mode 100755 index 000000000..833fc297d --- /dev/null +++ b/1985/CH16/EX16.3/Chapter16_example3.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+C=(11.4*10^6)//Calorific value of 1 kg of petrol in Calorie/kg
+t=25//Total petrol consumed in kg
+P=99.75//Power output in kW
+
+//Calculations
+C1=(t*C)//Calorific value of 25 kg of petrol in Calorie
+E=(C1*4.2)//Energy consumed by the engine in one hour in J/hour
+E1=(E/3600)//Energy consumed by the engine in one second in J/s
+n=((P*1000)/E1)*100//Efficiency in percent
+
+//Output
+printf('The efficiency of the engine is %i percent',n)
diff --git a/1985/CH16/EX16.4/Chapter16_example4.sce b/1985/CH16/EX16.4/Chapter16_example4.sce new file mode 100755 index 000000000..4ad51b95d --- /dev/null +++ b/1985/CH16/EX16.4/Chapter16_example4.sce @@ -0,0 +1,11 @@ +clc
+clear
+//Input data
+h=60//Height of the Niagra falls in m
+S=4190//Specific of water in J/kg.K
+
+//Calculations
+dt=(h*9.8)/S//The temperature difference in K
+
+//Output
+printf('The temperature difference is %3.5f K',dt)
diff --git a/1985/CH16/EX16.5/Chapter16_example5.sce b/1985/CH16/EX16.5/Chapter16_example5.sce new file mode 100755 index 000000000..b1313adf3 --- /dev/null +++ b/1985/CH16/EX16.5/Chapter16_example5.sce @@ -0,0 +1,16 @@ +clc
+clear
+//Input data
+n=(1/6)//Efficiency
+T=82//Temperature to which the sink is reduced in K
+//Solving two equations
+//5T1=6T2
+//2T1=3T2-246
+A=[5 -6
+ 2 -3]//Coefficient matrix
+B=[0
+ -246]//Constant matrix
+X=inv(A)*B//Variable matrix
+
+//Output
+printf('The temperature of the source is %3.0f K \n The temperature of the sink is %3.0f K',X(1),X(2))
diff --git a/1985/CH16/EX16.6/Chapter16_example6.sce b/1985/CH16/EX16.6/Chapter16_example6.sce new file mode 100755 index 000000000..fb8ac21d8 --- /dev/null +++ b/1985/CH16/EX16.6/Chapter16_example6.sce @@ -0,0 +1,12 @@ +clc
+clear
+//Input data
+T=[7+273 27+273]//Temperatures between the refrigerator is working in K
+W=250//Work done in J
+
+//Calulations
+Q2=(W/(T(2)-T(1)))*T(1)//Quantity of heat removed per second in J/s
+Qx=(Q2*3600)/10^7//Quantity of heat removed per hour in J/h*10^7
+
+//Output
+printf('Quantity of heat removed per hour by the refrigerator is %3.2f*10^7 J/h',Qx)
diff --git a/1985/CH17/EX17.1/Chapter17_example1.sce b/1985/CH17/EX17.1/Chapter17_example1.sce new file mode 100755 index 000000000..e6967242e --- /dev/null +++ b/1985/CH17/EX17.1/Chapter17_example1.sce @@ -0,0 +1,17 @@ +clc
+clear
+//Input data
+m=0.8//Mass of the slab in kg
+l=(9.648*10^-3)//Thickness of slab in m
+d=(1.464*10^-3)//Thickness of the cardboard in m
+r=(5.752*10^-2)//Radius of the slab in m
+S=385//Specific heat of slab in J/kg.K
+T2=363.5//Steady temperature of the slab in K
+T1=372//Steady temperature of the steam chamber in K
+dTt=(10/300)//Rate of cooling in K/s
+
+//Calculations
+K=(m*S*dTt*((r+2*l)/(2*r+2*l)))*(d/(3.14*r^2))*(1/(T1-T2))//Thermal conductivity of the cardboard in W/m.K
+
+//Output
+printf('Thermal conductivity of the cardboard is %3.4f W/m.K',K)
diff --git a/1985/CH17/EX17.2/Chapter17_example2.sce b/1985/CH17/EX17.2/Chapter17_example2.sce new file mode 100755 index 000000000..751df8bf5 --- /dev/null +++ b/1985/CH17/EX17.2/Chapter17_example2.sce @@ -0,0 +1,12 @@ +clc
+clear
+//Input data
+L2=0.032//Length of the wax melted portion in the iron rod in m
+L1=0.08//Length of the wax melted portion in the copper rod in m
+K1=385//Thermal conductivity of copper in W/m.K
+
+//Calculations
+K2=(K1*L2^2)/L1^2//Thermal conductivity of iron in W/m.K
+
+//Output
+printf('Thermal conductivity of iron is %3.1f W/m.K',K2)
diff --git a/1985/CH17/EX17.3/Chapter17_example3.sce b/1985/CH17/EX17.3/Chapter17_example3.sce new file mode 100755 index 000000000..fac27627b --- /dev/null +++ b/1985/CH17/EX17.3/Chapter17_example3.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+d=0.2//Length of iron rod in m
+A=0.685*10^-4//Area of cross-section in m^2
+T1=100+273//Temperature of the hot end in K
+T2=30+273//Temperature of the other end in K
+K=62//Thermal conductivity of iron in W/m.K
+t=10*60//Time in sec
+
+//Calculations
+Q=(K*A*(T1-T2)*t)/d//Quantity of heat conducted in J
+
+//Output
+printf('The iron rod conducts %3.2f J of energy in 10 minutes',Q)
diff --git a/1985/CH17/EX17.4/Chapter17_example4.sce b/1985/CH17/EX17.4/Chapter17_example4.sce new file mode 100755 index 000000000..58805ea49 --- /dev/null +++ b/1985/CH17/EX17.4/Chapter17_example4.sce @@ -0,0 +1,18 @@ +clc
+clear
+//Input data
+m=1//Mass of water collected in kg
+r=0.02//Radius of bar in m
+d=0.05//Distance between the thermometers in m
+T1=80+273//Temperature of the thermometer 1 in K
+T2=70+273//Temperature of the thermometer 2 in K
+T3=30+273//Temperature of water at the inlet in K
+T4=40+273//Temperature of water at the outlet in K
+t=(7*60)//Time of flow in s
+S=4190//Specific heat of water in J/kg.K
+
+//Calculations
+K=(m*d*(T4-T3)*S)/(3.14*r^2*t*(T1-T2))//Thermal conductivity of the metal in W/m.K
+
+//Output
+printf('Thermal conductivity of the metal is %3.2f W/m.K',K)
diff --git a/1985/CH17/EX17.5/Chapter17_example5.sce b/1985/CH17/EX17.5/Chapter17_example5.sce new file mode 100755 index 000000000..e1ee6ff10 --- /dev/null +++ b/1985/CH17/EX17.5/Chapter17_example5.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+x=6//Thickness of the ice layer in cm
+x1=(x+0.2)//Increase in thickness in cm
+K=2.1//Thermal conductivity of ice in W/m.K
+L=3.36*10^5//Latent heat of ice in J/kg
+d=910//Density of ice at 0 degree C in kg/m^3
+T=-(273-((20+273)))//Change of temperature in K
+
+//Calculations
+t=(d*L*(x1^2-x^2)*10^-4)/(2*K*T)//Time taken by ice to increase its thickness in sec
+
+//Output
+printf('Time taken by ice to increase its thickness from %i cm to %3.1f cm is %3.2f sec',x,x1,t)
diff --git a/1985/CH17/EX17.6/Chapter17_example6.sce b/1985/CH17/EX17.6/Chapter17_example6.sce new file mode 100755 index 000000000..921798695 --- /dev/null +++ b/1985/CH17/EX17.6/Chapter17_example6.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+d1=0.04//Thickness of first layer in m
+d2=0.02//Thickness of second layer in m
+K1=226.8//Thermal conductivity of the first layer in W/m.K
+K2=151.2//Thermal conductivity of the second layer in W/m.K
+T1=100+273//Temperature of first layer in K
+T2=0+273//Temperature of second layer in K
+
+//Calculations
+T=((((K1*T1)/d1)-((K2*T2)/d2))/((K1/d1)+(K2/d2)))//The temperature at the interface in K. The formula and calculation is made wrong in the textbook.
+
+//Output
+printf('The temperature at the interface is %3.3f K',T)
diff --git a/1985/CH17/EX17.7/Chapter17_example7.sce b/1985/CH17/EX17.7/Chapter17_example7.sce new file mode 100755 index 000000000..55aca5241 --- /dev/null +++ b/1985/CH17/EX17.7/Chapter17_example7.sce @@ -0,0 +1,18 @@ +clc
+clear
+//Input data
+K1=0.168//Thermal conductivity of the briks in W/m.K
+K2=0.042//Thermal conductivity of cork in W/m.K
+d1=0.08//Thickness of the brick in m
+d2=0.04//Thickness of the cork in m
+T1=20+273//Outer temperature in K
+T2=10+273//Inner temperature in K
+
+//Calculations
+T=((d2*K1*T1+d1*T2*K2)/(d1*K2+d2*K1))//The temperature of the interface in K
+dT=(T1-T)//Difference in temperature in the bricks in K
+tg=(dT/d1)//Temperature gradient in the bricks in K/m
+tc=(T-T2)/d2//Temperature gradient in the cork in K/m
+
+//Output
+printf('Temperature gradient in the bricks is %3.2f K/m \n Temperature gradient in the cork is %3.2f K/m',tg,tc)
diff --git a/1985/CH2/EX2.1/Chapter2_example1.sce b/1985/CH2/EX2.1/Chapter2_example1.sce new file mode 100755 index 000000000..a22d721d0 --- /dev/null +++ b/1985/CH2/EX2.1/Chapter2_example1.sce @@ -0,0 +1,13 @@ +clc
+clear
+//Input data
+l=3//Length of the wire in m
+A=(6.25*10^-5)//Area in m^2
+dl=(3*10^-3)//Increase in length in m
+F=(1.2*10^3)//Tension in N
+
+//Calculations
+Y=((F*l)/(A*dl))/10^10//Young's modulus in N/m^2 *10^10
+
+//Output
+printf('Youngs modulus of the wire is %3.2f *10^10 N/m^2',Y)
diff --git a/1985/CH2/EX2.10/Chapter2_example10.sce b/1985/CH2/EX2.10/Chapter2_example10.sce new file mode 100755 index 000000000..02a194f38 --- /dev/null +++ b/1985/CH2/EX2.10/Chapter2_example10.sce @@ -0,0 +1,13 @@ +clc
+clear
+//Input data
+p=(1.01*10^5)//Standard atmospheric pressure in N/m^2
+K=(16*10^10)//Bulk modulus in N/m^2
+dp=(p-10^2)//Change in pressure in N/m^2
+
+//Calculations
+dvv=(dp/K)//Change in volume to initial volume
+fv=(dvv/10^-7)//Fractional change in the volume *10^-7
+
+//Output
+printf('The change in volume of steel bar is %3.1f*10^-7 *V m^3',fv)
diff --git a/1985/CH2/EX2.2/Chapter2_example2.sce b/1985/CH2/EX2.2/Chapter2_example2.sce new file mode 100755 index 000000000..477e32bab --- /dev/null +++ b/1985/CH2/EX2.2/Chapter2_example2.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+l=2.75//Length of steel wire in m
+d=(1*10^-3)//Diameter of the wire in m
+M=1//Applied load in kg
+Y=(2*10^11)//Youngs modulus in N/m^2
+
+//Calculations
+T=(M*9.8)//Tension in N
+dl=((T*l)/(3.14*(d/2)^2*Y))/10^-4//Increase in length in m *10^-4
+
+//Output
+printf('The increase in length of wire is %3.5f *10^-4 m',dl)
diff --git a/1985/CH2/EX2.3/Chapter2_example3.sce b/1985/CH2/EX2.3/Chapter2_example3.sce new file mode 100755 index 000000000..bf0ccb6b4 --- /dev/null +++ b/1985/CH2/EX2.3/Chapter2_example3.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+d=[6,6,2]//Dimensions of the rectangular solid in cm
+F=0.3//Force applied in N
+d1=5//Displacement relative to the lower surface in mm
+
+//Calculations
+s=(F/(d(1)*d(2)*10^-4))//Shear stress in N/m^2
+q=(d1*10^-3)/(d(3)*10^-2)//Shear strain
+rm=(s/q)//Rigidity modulus in N/m^2
+
+//Output
+printf('Shearing stress is %3.2f N/m^2 \n Shear strain is %3.2f \n Rigidity modulus is %3.2f N/m^2',s,q,rm)
diff --git a/1985/CH2/EX2.4/Chapter2_example4.sce b/1985/CH2/EX2.4/Chapter2_example4.sce new file mode 100755 index 000000000..1abfb4c39 --- /dev/null +++ b/1985/CH2/EX2.4/Chapter2_example4.sce @@ -0,0 +1,13 @@ +clc
+clear
+//Input data
+d=1.5//Distortion in the block in cm
+t=30//Thickness of the block in cm
+A=12//Surface area of the block in m^2
+s=(2.5*10^10)//Shear modulus of aluminium in N/m^2
+
+//Calculations
+F=((s*A*10^-4*d*10^-2)/(t*10^-2))/10^6//Shearing force in N
+
+//Output
+printf('Shearing force is %3.1f *10^6 N',F)
diff --git a/1985/CH2/EX2.6/Chapter2_example6.sce b/1985/CH2/EX2.6/Chapter2_example6.sce new file mode 100755 index 000000000..4a83c72f6 --- /dev/null +++ b/1985/CH2/EX2.6/Chapter2_example6.sce @@ -0,0 +1,11 @@ +clc
+clear
+//Input data
+Y=(7.25*10^10)//Youngs modulus of silver in N/m^2
+K=(11*10^10)//Bulk modulus of silver in N/m^2
+
+//Calculations
+s=(3*K-Y)/(6*K)//Poissons ratio
+
+//Output
+printf('Poissons ratio for silver is %3.2f',s)
diff --git a/1985/CH2/EX2.7/Chapter2_example7.sce b/1985/CH2/EX2.7/Chapter2_example7.sce new file mode 100755 index 000000000..c61ac6d11 --- /dev/null +++ b/1985/CH2/EX2.7/Chapter2_example7.sce @@ -0,0 +1,19 @@ +clc
+clear
+//Input data
+l=3//Length of the wire in m
+Y=(12.5*10^10)//Youngs modulus in N/m^2
+d=1//diameter of the wire in mm
+M=10//load applied in kg
+p=0.26//Poissons ratio
+
+//Calculations
+dl=(M*9.8*l)/(3.14*(d/2)^2*10^-6*Y)//Increase in length in m
+sl=(p*dl)/l//Lateral strain
+dd=(sl*d*10^-3)//Decrease in diameter in m
+E=dl/10^-3//Extensio produced in m*10^-3
+lc=dd/10^-7//Lateral compression in m*10^-7
+
+//Output
+printf('Extension produced is %3.2f *10^-3 m \n Lateral compression produced is %3.3f *10^-7 m',E,lc)
+
diff --git a/1985/CH2/EX2.8/Chapter2_example8.sce b/1985/CH2/EX2.8/Chapter2_example8.sce new file mode 100755 index 000000000..80b99bcc2 --- /dev/null +++ b/1985/CH2/EX2.8/Chapter2_example8.sce @@ -0,0 +1,13 @@ +clc
+clear
+//Input data
+l=1//Length of wire in m
+d=0.001//diameter of the wire in m
+q=(90*3.14)/180//Twist angle in radians
+r=(2.8*10^10)//Rigidity modulus in N/m^2
+
+//Calculations
+C=((3.14^2*r*(d/2)^4)/(4*l))/10^-3//Couple to be applied in N.m
+
+//Output
+printf('The couple to be applied is %3.4f *10^-3 N.m',C)
diff --git a/1985/CH2/EX2.9/Chapter2_example9.sce b/1985/CH2/EX2.9/Chapter2_example9.sce new file mode 100755 index 000000000..8a44c3f9e --- /dev/null +++ b/1985/CH2/EX2.9/Chapter2_example9.sce @@ -0,0 +1,15 @@ +clc
+clear
+d=(0.82*10^-3)//Diameter of the wire in m
+dl=(1*10^-3)//Length of elongation produced in m
+F=(0.33*9.8)//Force in N
+q=1//Angular twist in radians
+T=(10*10^-5)//Torque in N
+n=(2.2529*10^9)//Rigidity modulus in N/m^2
+
+//Calculations
+Y=(F/(3.14*(d/2)^2*dl))//youngs modulus *L in N/m^2
+s=(Y/(2*n))-1//Poissons ratio
+
+//Output
+printf('Poissons ratio is %3.4f',s)
diff --git a/1985/CH3/EX3.1/Chapter3_Example1.sce b/1985/CH3/EX3.1/Chapter3_Example1.sce new file mode 100755 index 000000000..48f1104a9 --- /dev/null +++ b/1985/CH3/EX3.1/Chapter3_Example1.sce @@ -0,0 +1,14 @@ +
+clc
+clear
+
+//INPUT DATA
+u=3.5*10^2;//Speed of the cyclist in m/s
+v=2*10^3;//Speed of the train in m/s
+c=3*10^8;//Speed of light in m/s
+
+//CALCULATIONS
+U=((u+v)/(1+((u*v)/c^2)))/1000//Relative speed in km/s
+
+//OUTPUT
+mprintf('The relative speed is %3.2f*10^3 m/s',U)
diff --git a/1985/CH3/EX3.10/Chapter3_Example10.sce b/1985/CH3/EX3.10/Chapter3_Example10.sce new file mode 100755 index 000000000..429754bd5 --- /dev/null +++ b/1985/CH3/EX3.10/Chapter3_Example10.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+E=2*10^6*1.6*10^-19//Energy of the electron in J
+c=3*10^8//Velocity of light in m/s
+mo=9.1*10^-31//Mass of the electron in kg
+
+//Calculations
+m=(E/c^2)+mo//Mass in kg. In textbook, the answer is wrong. The correct answer is 44.65*10^-31 kg
+v=(c*sqrt(1-(mo/m)^2))/10^8//Velocity of the particle in m/s
+
+//Output
+printf('Velocity of the particle is %3.3f*10^8 m/s',v)
+
diff --git a/1985/CH3/EX3.2/Chapter3_Example2.sce b/1985/CH3/EX3.2/Chapter3_Example2.sce new file mode 100755 index 000000000..7b96577bc --- /dev/null +++ b/1985/CH3/EX3.2/Chapter3_Example2.sce @@ -0,0 +1,12 @@ +
+clc
+clear
+
+//INPUT DATA
+c=3*10^8;//Speed of light in m/s
+
+//CALCULATIONS
+v=((sqrt(3)*c)/2)/10^8//Speed in m/s
+
+//OUTPUT
+mprintf('The mass of the object is double its mass at rest, when its speed is %3.3f*10^8 m/s',v)
diff --git a/1985/CH3/EX3.3/Chapter3_Example3.sce b/1985/CH3/EX3.3/Chapter3_Example3.sce new file mode 100755 index 000000000..acc18b7a1 --- /dev/null +++ b/1985/CH3/EX3.3/Chapter3_Example3.sce @@ -0,0 +1,15 @@ +
+clc
+clear
+
+//INPUT
+E=1*1.6*10^-16;//Kinetic energy of electron in J
+m=9.1*10^-31;//Mass of electron in Kg
+c=3*10^8;//Speed of light in m/s
+
+//CALCULATIONS
+v=sqrt((2*E)/m)//Velocity of the electron in m/s
+M=(m/sqrt(1-(v^2/c^2)))/10^-31//Mass of the electron in kg
+
+//OUTPUT
+mprintf('Mass of electron having energy 1 keV is %5.4f*10^-31 kg',M)
diff --git a/1985/CH3/EX3.4/Chapter3_Example4.sce b/1985/CH3/EX3.4/Chapter3_Example4.sce new file mode 100755 index 000000000..1d293b340 --- /dev/null +++ b/1985/CH3/EX3.4/Chapter3_Example4.sce @@ -0,0 +1,14 @@ +
+clc
+clear
+
+//INPUT
+v=3*10^7;//Speed of the spaceship in m/s
+t=1;//Time interval between the signals in s
+c=3*10^8;//Speed of light in m/s
+
+//CALCULATIONS
+T=t/sqrt(1-(v^2/c^2))//Time interval between sucessive signals in s
+
+//OUTPUT
+mprintf('The time interval between sucessive signals as seen from the control room is %3.3f s',T)
diff --git a/1985/CH3/EX3.5/Chapter3_Example5.sce b/1985/CH3/EX3.5/Chapter3_Example5.sce new file mode 100755 index 000000000..aa41d1668 --- /dev/null +++ b/1985/CH3/EX3.5/Chapter3_Example5.sce @@ -0,0 +1,14 @@ +
+clc
+clear
+
+//INPUT
+T=2;//Time on earth in years
+t=1;//Time on satilite in years
+c=3*10^8;//Speed of light in m/s
+
+//CALCULATIONS
+v=c*sqrt(1-(t^2/T^2))/10^8//Velocity in m/s
+
+//OUTPUT
+mprintf('The speed of the rocket is %5.3f*10^8 m/s',v )
diff --git a/1985/CH3/EX3.6/Chapter3_Example6.sce b/1985/CH3/EX3.6/Chapter3_Example6.sce new file mode 100755 index 000000000..8087ae207 --- /dev/null +++ b/1985/CH3/EX3.6/Chapter3_Example6.sce @@ -0,0 +1,18 @@ +
+clc
+clear
+
+//INPUT
+t=2*10^-6;//The life time of micro mesons in s
+v=2.994*10^8;//Speed of micro mesons in m s^-1
+c=3*10^8;//Speed of light in m s^-1
+
+//CALCULATIONS
+T=(t/sqrt(1-(v^2/c^2)))/10^-5//Life time of micro mesons in s
+D=v*T*10^-5//Distance travelled by micro mesons in one life time in m
+d=v*t//Distance travelled by the micro mesons if there is no relativistic effect in m
+
+//OUTPUT
+mprintf('The mean life time of micro mesons is %f*10^-5 s \n',T)
+mprintf('The distance traveled by micro mesons is %3.1f m \n',D)
+mprintf('The distance traveled if there is no relativistic effect is %3.1f m \n',d)
diff --git a/1985/CH3/EX3.8/Chapter3_Example8.sce b/1985/CH3/EX3.8/Chapter3_Example8.sce new file mode 100755 index 000000000..4ec725032 --- /dev/null +++ b/1985/CH3/EX3.8/Chapter3_Example8.sce @@ -0,0 +1,14 @@ +
+clc
+clear
+
+//INPUT
+L=1.2;//Length of the satillite in m
+v=0.98*3*10^8;//Speed of the satillite in m/s
+c=3*10^8;//Speed of light in m s^-1
+
+//CALCULATIONS
+l=L*sqrt(1-(v^2/c^2))//The contracted length in m
+
+//OUTPUT
+mprintf('The contracted length is %3.4f m',l)
diff --git a/1985/CH3/EX3.9/Chapter3_Example9.sce b/1985/CH3/EX3.9/Chapter3_Example9.sce new file mode 100755 index 000000000..d18dfec2b --- /dev/null +++ b/1985/CH3/EX3.9/Chapter3_Example9.sce @@ -0,0 +1,11 @@ +clc
+clear
+//Input data
+v=0.9//Velocity of the particle is 0.9c
+
+//Calculations
+x=1/sqrt(1-v^2)//x value for obtaining mass
+E=(x-1)//E value for obtaining energy
+
+//Output
+printf('The relativistic mass of the particle is %3.3f mo \n The kinetic energy of the particle is %3.3f mo.c^2',x,E)
diff --git a/1985/CH4/EX4.1/Chapter4_Example1.sce b/1985/CH4/EX4.1/Chapter4_Example1.sce new file mode 100755 index 000000000..1aab5a82f --- /dev/null +++ b/1985/CH4/EX4.1/Chapter4_Example1.sce @@ -0,0 +1,16 @@ +clc
+clear
+n=15000//Number of lines per inch
+w=[5890,5896]//Wavelengths of the two sodium lines in Amgstrongs
+n1=1//Order of diffraction
+
+//Calculations
+N=(n/2.54)*100//Number of lines present per meter
+q1=asind(N*n1*w(1)*10^-10)//Angle of diffraction for D1 line in degrees
+q2=asind(N*n1*w(2)*10^-10)//Angle of diffraction for D2 line in degrees
+q=q2-q1//The angular seperation in degrees
+x=(q*60)//The angular seperation in minutes
+y=(x-int(x))*60//For output
+
+//Output
+printf('The angular seperation is %i minute %3.2f seconds',x,y)
diff --git a/1985/CH4/EX4.2/Chapter4_Example2.sce b/1985/CH4/EX4.2/Chapter4_Example2.sce new file mode 100755 index 000000000..5cd4de563 --- /dev/null +++ b/1985/CH4/EX4.2/Chapter4_Example2.sce @@ -0,0 +1,11 @@ +clc
+clear
+//Input data
+n=1//Order of diffraction
+w=[5890,5896]//Wavelengths of the two sodium lines in angstroms
+
+//Calculations
+N=(w(1)*10^-10)/((w(2)-w(1))*10^-10*n)//Minimum number of lines in a grating which will just resolve in the first order
+
+//Output
+printf('Minimum number of lines in a grating which will just resolve in the first order is %3.0f',N)
diff --git a/1985/CH4/EX4.3/Chapter4_Example3.sce b/1985/CH4/EX4.3/Chapter4_Example3.sce new file mode 100755 index 000000000..9710da958 --- /dev/null +++ b/1985/CH4/EX4.3/Chapter4_Example3.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+ab=(15*10^-6)//Grating constant in m
+w=(2.4*10^-6)//Wavelength in m
+n=3//Order of diffraction
+
+//Calculations
+q=asind((n*w)/ab)//Angle at which third order is obtained
+qx=(q-int(q))*60//For output
+qy=(qx-int(qx))*60//For output
+
+//Output
+printf('Third order is obtained at %i degrees %3.0f minutes %3.2f seconds',q,qx,qy)
diff --git a/1985/CH4/EX4.4/Chapter4_Example4.sce b/1985/CH4/EX4.4/Chapter4_Example4.sce new file mode 100755 index 000000000..3559148f5 --- /dev/null +++ b/1985/CH4/EX4.4/Chapter4_Example4.sce @@ -0,0 +1,16 @@ +clc
+clear
+//Input data
+w=[5000,5100]//Wavelengths of light in Armstrongs
+N=6000//Number of lines drawn on the grating per cm
+n=1//Order of diffraction
+F=1//Focal length of the lens in m
+
+//Calculations
+q1=asind(N*100*n*w(1)*10^-10)//Angle of diffraction for D1 line in degrees
+q2=asind(N*100*n*w(2)*10^-10)//Angle of diffraction for D1 line in degrees
+x=F*(tand(q2)-tand(q1))*1000//Seperation of the two lines in mm
+
+//Output
+printf('Seperation of two lines in the first order spectrum is %3.1f mm',x)
+
diff --git a/1985/CH4/EX4.5/Chapter4_Example5.sce b/1985/CH4/EX4.5/Chapter4_Example5.sce new file mode 100755 index 000000000..599666d66 --- /dev/null +++ b/1985/CH4/EX4.5/Chapter4_Example5.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+N=(5.9*10^5)//Number of lines drawn on the grating in lines/m
+n=2//Order of diffraction
+l=(6000*10^-10)//Wavelength of light used in m
+
+//Calculations
+q=asind(N*n*l)//Angle of diffraction in degrees
+cosq=cosd(q)//Cosine of angle of diffraction
+P=((n*N)/cosq)/10^6//Dispersive power* 10^6
+
+//Output
+printf('The dispersive power of the grating in the second order is %3.2f *10^6',P )
diff --git a/1985/CH4/EX4.6/Chapter4_Example6.sce b/1985/CH4/EX4.6/Chapter4_Example6.sce new file mode 100755 index 000000000..ef5e470f4 --- /dev/null +++ b/1985/CH4/EX4.6/Chapter4_Example6.sce @@ -0,0 +1,13 @@ +clc
+clear
+//Input data
+N=14438//Number of lines per inch
+n=3//Order of diffraction
+w=(4200*10^-10)//Wavelength of light used in m
+
+//Calculations
+x=(N/2.54)*100//Number of lines per m
+dq=((n*x*10^-10)/sqrt(1-(x^2*n^2*w^2)))*(180/3.14)//Angular seperation in degrees. In textbook, it is given wrong as 0.14 degrees
+
+//Output
+printf('The angular seperation is %3.3f degrees',dq)
diff --git a/1985/CH4/EX4.7/Chapter4_Example7.sce b/1985/CH4/EX4.7/Chapter4_Example7.sce new file mode 100755 index 000000000..5062ea324 --- /dev/null +++ b/1985/CH4/EX4.7/Chapter4_Example7.sce @@ -0,0 +1,12 @@ +clc
+clear
+//Input data
+N=5000//Number of lines drawn on the grating per m
+w=(5890*10^-10)//Wavelength of the light used in m
+
+//Calculations
+n=(1/(w*N*100))//Order of spectrum
+x=ceil(n)//Rounding off to next integer
+
+//Output
+printf('Since n < %i, it is not possible to observe the fourth or higher order of diffraction',x)
diff --git a/1985/CH5/EX5.1/chapter5_Example1.sce b/1985/CH5/EX5.1/chapter5_Example1.sce new file mode 100755 index 000000000..9d178c5c8 --- /dev/null +++ b/1985/CH5/EX5.1/chapter5_Example1.sce @@ -0,0 +1,13 @@ +clc
+clear
+//Input data
+l=(5900*10^-10)//Wavelength of sodium D line in m
+h=6.625*10^-34//Plancks constant in J.s
+e=(1.602*10^-19)//Charge of electrons in Columbs
+c=(3*10^8)//Velocity of light in m/s
+
+//Calculations
+E=((h*c)/l)/e//Energy emitted in eV
+
+//Output
+printf('The energy of the first excited state is %3.1f eV',E)
diff --git a/1985/CH5/EX5.2/chapter5_Example2.sce b/1985/CH5/EX5.2/chapter5_Example2.sce new file mode 100755 index 000000000..2b1f0d35c --- /dev/null +++ b/1985/CH5/EX5.2/chapter5_Example2.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+T=250+273//Temperature in K
+l=(5900*10^-10)//Wavelength of sodium D line in m
+h=6.625*10^-34//Plancks constant in J.s
+e=(1.602*10^-19)//Charge of electrons in Columbs
+c=(3*10^8)//Velocity of light in m/s
+k=(1.38*10^-23)//Boltzmann constant in J/K
+
+//Calculations
+N=exp((-h*c)/(k*T*l))/10^-21//The ratio between the atoms in the first excited state and the ground state *10^-21
+
+//Output
+printf('The ratio between the atoms in the first excited state and the ground state is %3.3f*10^-21',N)
diff --git a/1985/CH5/EX5.3/chapter5_Example3.sce b/1985/CH5/EX5.3/chapter5_Example3.sce new file mode 100755 index 000000000..5acbe5717 --- /dev/null +++ b/1985/CH5/EX5.3/chapter5_Example3.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+T=250+273//Temperature in K
+l=(5900*10^-10)//Wavelength of sodium D line in m
+h=6.625*10^-34//Plancks constant in J.s
+e=(1.602*10^-19)//Charge of electrons in Columbs
+c=(3*10^8)//Velocity of light in m/s
+k=(1.38*10^-23)//Boltzmann constant in J/K
+
+//Calculations
+N=(1/(exp((h*c)/(k*T*l))-1))/10^-21//The ratio between the stimulated emission and the spontaneous emission *10^-21
+
+//Output
+printf('The ratio between the stimulated emission and the spontaneous emission is %3.5f*10^-21',N)
diff --git a/1985/CH5/EX5.4/chapter5_Example4.sce b/1985/CH5/EX5.4/chapter5_Example4.sce new file mode 100755 index 000000000..5fe356511 --- /dev/null +++ b/1985/CH5/EX5.4/chapter5_Example4.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+no=1.76//Refractive index of the ruby rod
+vo=4.3*10^14//Frequency in Hz
+dvo=1.5*10^11//The doppler broadening in Hz
+t21=4.3*10^-3//Lifetime of spontantaneous emission in s
+tp=6*10^-9//Lifetime of photon in s
+c=(3*10^8)//Velocity of light in m/s
+
+//Calculations
+dN=((4*3.14^2*vo^2*no^3*t21*dvo)/(c^3*tp))/10^23//The difference between the population of the excited state and the ground state in m^-3
+
+//Output
+printf('The difference between the population of the excited state and the ground state is %3.3f*10^23 m^-3',dN)
diff --git a/1985/CH5/EX5.5/chapter5_Example5.sce b/1985/CH5/EX5.5/chapter5_Example5.sce new file mode 100755 index 000000000..feb6ecd51 --- /dev/null +++ b/1985/CH5/EX5.5/chapter5_Example5.sce @@ -0,0 +1,16 @@ +clc
+clear
+//Input data
+l=5000*10^-10//Wavelength of the incident light in m
+T=300//Temperature in K
+h=6.625*10^-34//Plancks constant in J.s
+e=(1.602*10^-19)//Charge of electrons in Columbs
+c=(3*10^8)//Velocity of light in m/s
+k=(1.38*10^-23)//Boltzmann constant in J/K
+
+//Calculations
+v=(c/l)//Frequency of the incident light in Hz
+N=(1/(exp((h*c)/(k*T*l))-1))/10^-42//The ratio between the stimulated emission and the spontaneous emission*10^-42
+
+//Output
+printf('The ratio of stimulated emission to the spontaneous emission is %3.4f*10^-42 \n This shows that the spontantaneous emission is more predominant than that of the stimulated emission. For stimulating emission, N2>>N1 should exist.\n Therefore, there is no amplification possibility. \n But, subsequent development in maintaining population inversion by pumping the atoms from lower level to higher level optically or electronically led to the discovery of lasers.',N)
diff --git a/1985/CH5/EX5.6/chapter5_Example6.sce b/1985/CH5/EX5.6/chapter5_Example6.sce new file mode 100755 index 000000000..6a48dff86 --- /dev/null +++ b/1985/CH5/EX5.6/chapter5_Example6.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+l=632.8*10^-9//Wavelength of the laser beam in m
+P=2.3*10^-3//Power output in W
+c=(3*10^8)//Velocity of light in m/s
+h=6.625*10^-34//Plancks constant in J.s
+
+//Calculations
+f=(c/l)//Frequency of the photon emitted by the laser beam in Hz
+E=h*f//Energy of a photon in J
+n=((P*60)/E)/10^17//The number of photons emitted *10^17
+
+//Output
+printf('The number of photons emitted is %3.4f*10^17 photons/minute',n)
diff --git a/1985/CH5/EX5.7/chapter5_Example7.sce b/1985/CH5/EX5.7/chapter5_Example7.sce new file mode 100755 index 000000000..a7dc5bdeb --- /dev/null +++ b/1985/CH5/EX5.7/chapter5_Example7.sce @@ -0,0 +1,18 @@ +clc
+clear
+//Input data
+NA=0.16//Numerical aperture of the fibre
+n1=1.45//Refractive index of the core
+d=(90*10^-6)//Diameter of the core in m
+l=0.9*10^-6//Wavelength in m
+
+//Calculations
+n2=sqrt(n1^2-NA^2)//Refractive index of the cladding
+q=asind(NA)//Acceptance angle in degrees
+qx=(q-int(q))*60//For output
+qy=(qx-int(qx))*60//For output
+N=(4.9*((d*NA)/l)^2)//Number of modes propagating through the fibre
+n=(int(N)/2)//The number of modes propagating through graded fibre
+
+//Output
+printf('Refractive index of the cladding is %3.3f \n Acceptance angle of the fibre is %3.0f degrees %3.0f minutes %3.2f seconds \n Number of modes propagating through the fibre is %3.1f \n The number of modes propagating through graded fibre is %3.0f',n2,q,qx,qy,N,n)
diff --git a/1985/CH5/EX5.8/chapter5_Example8.sce b/1985/CH5/EX5.8/chapter5_Example8.sce new file mode 100755 index 000000000..7e737ee22 --- /dev/null +++ b/1985/CH5/EX5.8/chapter5_Example8.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+l=1*10^-6//Wavelength of light used in m
+n1=1.45//Refractive index of the core
+n2=1.448//Refractive index of the cladding
+d=6*10^-6//Diamter of the core in m
+
+//Calculations
+NA=sqrt(n1^2-n2^2)//Numerical aperture
+N=4.9*(d*NA/l)^2//Number of modes propagating through the fibre
+
+//Output
+printf('The number of modes that can be allowed through the fibre is %i. \n It is a single-mode fibre',N)
diff --git a/1985/CH6/EX6.1/Chapter6_Example1.sce b/1985/CH6/EX6.1/Chapter6_Example1.sce new file mode 100755 index 000000000..a7f1a2704 --- /dev/null +++ b/1985/CH6/EX6.1/Chapter6_Example1.sce @@ -0,0 +1,13 @@ +clc
+clear
+//Input data
+f=1.5//Focal length of an achromatic combination of two lenses in contact in m
+dp=[0.018,0.027]//Dispersive power of the materials of the lenses
+
+//Calculations
+f12=(dp(1)/dp(2))//Ratio of dispersive powers
+f1=(1-(1/f))*f//Focal length of the first lens in m
+f2=(f1/-f12)//Focal length of the second lens in m
+
+//Output
+printf('Focal length of the first lens is %3.1f m (convex lens) \n Focal length of the second lens is %3.2f m (concave lens)',f1,f2)
diff --git a/1985/CH6/EX6.2/Chapter6_Example2.sce b/1985/CH6/EX6.2/Chapter6_Example2.sce new file mode 100755 index 000000000..7da6ce6e5 --- /dev/null +++ b/1985/CH6/EX6.2/Chapter6_Example2.sce @@ -0,0 +1,13 @@ +clc
+clear
+//Input data
+r=[0.1,0.4]//Radii of curvature in m
+u=[1.5230,1.5145]//Refractive indices of the lens for violet and red light respectively
+
+//Calculations
+fr=1/((u(2)-1)*((1/r(1))-(1/r(2))))//Focal length of the lens for red light in m
+fv=1/((u(1)-1)*((1/r(1))-(1/r(2))))//Focal length of the lens for violet light in m
+f=fr-fv//Longitudinal chromatic aberration in m
+
+//Output
+printf('Longitudinal chromatic aberration for an object at infinity is %3.4f m',f)
diff --git a/1985/CH6/EX6.3/Chapter6_Example3.sce b/1985/CH6/EX6.3/Chapter6_Example3.sce new file mode 100755 index 000000000..a4ef72ac8 --- /dev/null +++ b/1985/CH6/EX6.3/Chapter6_Example3.sce @@ -0,0 +1,12 @@ +clc
+clear
+//Input data
+C=[1.5145,1.5170,1.5230]//Refractive index of the crown glass for C,D and F line respectively
+F=[1.6444,1.6520,1.6637]//Refractive index of the flint glass for C,D and F line respectively
+
+//Calculations
+w1=(C(3)-C(1))/(C(2)-1)//Dispersive power of the first lens
+w2=(F(3)-F(1))/(F(2)-1)//Dispersive power of the second lens
+
+//Output
+printf('The dispersive power for crown glass is %3.4f \n The dispersive power for the flint glass is %3.5f',w1,w2)
diff --git a/1985/CH6/EX6.4/Chapter6_Example4.sce b/1985/CH6/EX6.4/Chapter6_Example4.sce new file mode 100755 index 000000000..f371ea879 --- /dev/null +++ b/1985/CH6/EX6.4/Chapter6_Example4.sce @@ -0,0 +1,13 @@ +clc
+clear
+//Input data
+t1=30//Exposure time in s
+d1=5.6//Lens aperture
+d2=8//Lens aperture
+
+//Calculations
+f=1/2//The squares of the f-number are in the ratio 1:2
+t2=(1/f)*t1//Exposure time in s
+
+//Output
+printf('The time of exposure is %3.0f s when the print is made with a lens aperture of %i',t2,d2)
diff --git a/1985/CH7/EX7.1/Chapter7_Example1.sce b/1985/CH7/EX7.1/Chapter7_Example1.sce new file mode 100755 index 000000000..7eed6ce27 --- /dev/null +++ b/1985/CH7/EX7.1/Chapter7_Example1.sce @@ -0,0 +1,10 @@ +clc
+clear
+//Input data
+I=0.1//Intensity of sound produced by thunder in W/m^2
+
+//Calculations
+b=10*log10(I/10^-12)//Relative intensity in dB
+
+//Output
+printf('The intensity level is %3.0f dB',b)
diff --git a/1985/CH7/EX7.10/Chapter7_Example10.sce b/1985/CH7/EX7.10/Chapter7_Example10.sce new file mode 100755 index 000000000..ed404c86e --- /dev/null +++ b/1985/CH7/EX7.10/Chapter7_Example10.sce @@ -0,0 +1,10 @@ +clc
+clear
+//Input data
+I2=100//Sound intensity in W/m^2
+
+//Calculations
+b=10*log10(I2/10^-12)//Relative intensity in dB
+
+//Output
+printf('The intensity level of the jet plane is %3.0f dB',b)
diff --git a/1985/CH7/EX7.2/Chapter7_Example2.sce b/1985/CH7/EX7.2/Chapter7_Example2.sce new file mode 100755 index 000000000..26b8a54f6 --- /dev/null +++ b/1985/CH7/EX7.2/Chapter7_Example2.sce @@ -0,0 +1,10 @@ +clc
+clear
+//Input data
+I=(10^-4)//Intensity of sound in the street in W/m^2
+
+//Calculations
+b=10*log10(I/10^-12)//Relative intensity in dB
+
+//Output
+printf('The relative sound intensity is %3.0f dB',b)
diff --git a/1985/CH7/EX7.3/Chapter7_Example3.sce b/1985/CH7/EX7.3/Chapter7_Example3.sce new file mode 100755 index 000000000..c5fcb95a8 --- /dev/null +++ b/1985/CH7/EX7.3/Chapter7_Example3.sce @@ -0,0 +1,10 @@ +clc
+clear
+//Input data
+I=2//Sound intensity is doubled or Intensity ratio
+
+//Calculations
+b=10*log10(I)//Relative intensity in dB
+
+//Output
+printf('Increase in the acoustic intensity level is %3.2f dB',b)
diff --git a/1985/CH7/EX7.4/Chapter7_Example4.sce b/1985/CH7/EX7.4/Chapter7_Example4.sce new file mode 100755 index 000000000..1919bd29d --- /dev/null +++ b/1985/CH7/EX7.4/Chapter7_Example4.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+P=3.14//Power radiated in W
+r=10//Distance (radius) in m
+I=[100,1,10^-12]//Reference intensities in W/m^2
+
+//Calculations
+Is=P/(4*3.14*r^2)//Intensity of sound in W/m^2
+b1=10*log10(Is/I(1))//Relative intensity in dB
+b2=10*log10(Is/I(2))//Relative intensity in dB
+b3=10*log10(Is/I(3))//Relative intensity in dB
+
+//Output
+printf('The intensity level of a sound with reference to \n (i) %i W/m^2 = %3.4f dB \n (ii) %i W/m^2 = %3.4f dB \n (iii) 10^-12 W/m^2 = %3.3f dB',I(1),b1,I(2),b2,b3)
diff --git a/1985/CH7/EX7.5/Chapter7_Example5.sce b/1985/CH7/EX7.5/Chapter7_Example5.sce new file mode 100755 index 000000000..e3583ec13 --- /dev/null +++ b/1985/CH7/EX7.5/Chapter7_Example5.sce @@ -0,0 +1,12 @@ +clc
+clear
+//Input data
+P=1.5//The acoustic power produced by the loudspeaker in J/s
+r=20//Distance in m
+
+//Calculations
+I=(P/(4*3.14*r^2))//Intensity of the sound produced by the loudspeaker in W/m^2
+b=10*log10(I/10^-12)//Intensity level in dB
+
+//Output
+printf('The intensity level at a distance of %i m is %3.1f dB',r,b)
diff --git a/1985/CH7/EX7.6/Chapter7_Example6.sce b/1985/CH7/EX7.6/Chapter7_Example6.sce new file mode 100755 index 000000000..96ec9f51a --- /dev/null +++ b/1985/CH7/EX7.6/Chapter7_Example6.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+b1=80//Intensity levelof the sound produced by the electric generator in dB
+b2=70//Intensity level of the room in dB
+
+//Calculations
+I2=10^(b1/10)*10^-12//Intensity of the sound produced by the electric generator in W/m^2
+I4=10^(b2/10)*10^-12//Intensity of the sound existing in the room in W/m^2
+I=I2+I4//Total sound intensity when the generator is operating in W/m^2
+b=10*log10(I/10^-12)//Relative intensity in dB
+
+//Output
+printf('The resultant intensity level of the sound is %3.3f dB',b)
+
diff --git a/1985/CH7/EX7.7/Chapter7_Example7.sce b/1985/CH7/EX7.7/Chapter7_Example7.sce new file mode 100755 index 000000000..93ea60a61 --- /dev/null +++ b/1985/CH7/EX7.7/Chapter7_Example7.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+v=1500//Volume of hall in m^3
+A1=100//Absorption of the sound by the hall in m^2 O.W.U or sabines
+A2=100//Absorption of the sound by the audience in m^2 O.W.U or sabines
+
+//Calculations
+A=A1+A2//Total absorption of sound in sabines
+t1=(0.16*v)/A1//Reverberation time of the hall when the room is empty in s
+t2=(0.16*v)/A//Reverberation time of the hall when the room is filled with audience in s
+t=t1-t2//Change in reverberation time in s
+
+//Output
+printf('When the hall is filled with audience, the reverberation time is reduced to %3.1f s',t)
diff --git a/1985/CH7/EX7.8/Chapter7_Example8.sce b/1985/CH7/EX7.8/Chapter7_Example8.sce new file mode 100755 index 000000000..4a96182a0 --- /dev/null +++ b/1985/CH7/EX7.8/Chapter7_Example8.sce @@ -0,0 +1,12 @@ +clc
+clear
+//Input data
+v=1000//Volume of the hall in m^3
+T=2//Reverberation time in s
+s=350//Area of the sound absorbing surface in m^2
+
+//Calculations
+a=(0.16*v)/(T*s)//The average absorption coefficient
+
+//Output
+printf('The average absorption coefficient of the room is %3.4f',a)
diff --git a/1985/CH7/EX7.9/Chapter7_Example9.sce b/1985/CH7/EX7.9/Chapter7_Example9.sce new file mode 100755 index 000000000..05e944fa1 --- /dev/null +++ b/1985/CH7/EX7.9/Chapter7_Example9.sce @@ -0,0 +1,16 @@ +clc
+clear
+//Input data
+v=2400//Volume of the hall in m^3
+s=600//Seating capacity of the hall
+a=[500,600,500,20,400,200]//Area or number for plaster ceiling, plaster walls, wood floor, wood doors, seats cushion, seats cane in m^2 for arae
+c=[0.02,0.03,0.06,0.06,0.01,0.01]//Coefficient of absorption for plaster ceiling, plaster walls, wood floor, wood doors, seats cushion, seats cane sabine/ chair
+am=0.45//Absorption of each member of the audience in sabine
+//Calculations
+T1=a(1)*c(1)+a(2)*c(2)+a(3)*c(3)+a(4)*c(4)+a(5)*c(5)+a(6)*c(6)//Total absorption when the hall is empty in sabine
+t1=(0.16*v)/T1//Reverberation time in s
+T2=a(1)*c(1)+a(2)*c(2)+a(3)*c(3)+a(4)*c(4)+a(5)*am+a(6)*am//Total absorption when the hall is occupied with audience
+t2=(0.16*v)/T2//Reverberation time in s
+
+//Output
+printf('The reverberation time of the hall \n (i) when it is empty = %3.3f s \n (ii) when filled with audience = %3.2f s',t1,t2)
diff --git a/1985/CH8/EX8.1/Chapter8_Example1.sce b/1985/CH8/EX8.1/Chapter8_Example1.sce new file mode 100755 index 000000000..92ad9d967 --- /dev/null +++ b/1985/CH8/EX8.1/Chapter8_Example1.sce @@ -0,0 +1,11 @@ +clc
+clear
+t=(1*10^-3)//Thickness of the crystal in m
+d=2650//Density of quartz in kg/m^3
+Y=(7.9*10^10)//Youngs modulus of quartz in N/m^2
+
+//Calculations
+f=((1/(2*t))*sqrt(Y/d))/10^6//Fundamental frequency of the quartz crystal in Hz *10^6
+
+//Output
+printf('Fundamental frequency of the quartz crystal is %3.3f *10^6 Hz',f)
diff --git a/1985/CH8/EX8.2/Chapter8_Example2.sce b/1985/CH8/EX8.2/Chapter8_Example2.sce new file mode 100755 index 000000000..fc926c6a0 --- /dev/null +++ b/1985/CH8/EX8.2/Chapter8_Example2.sce @@ -0,0 +1,13 @@ +clc
+clear
+//Input data
+t=0.005//Length of the crystal in m
+Y=(7.9*10^10)//Youngs modulus in N/m^2
+d=2650//Density in kgm^3
+
+//Calculations
+f1=((1/(2*t))*sqrt(Y/d))/10^5//Fundamental vibration in Hz *10^5
+f2=2*f1/10//Frequency of first overcome in Hz *10^6
+
+//Output
+printf('The frequency of the fundamental note is %3.2f *10^5 Hz \n The first overtone emitted by a piezoelectric crystal is %3.3f *10^6 Hz',f1,f2)
diff --git a/1985/CH8/EX8.3/Chapter8_Example3.sce b/1985/CH8/EX8.3/Chapter8_Example3.sce new file mode 100755 index 000000000..2e4183a06 --- /dev/null +++ b/1985/CH8/EX8.3/Chapter8_Example3.sce @@ -0,0 +1,11 @@ +clc
+clear
+//Input data
+v=5000//Velocity of sound in steel in m/s
+f=(50*10^3)//Difference between two adjacent frequencies in Hz
+
+//Calculations
+d=(v/(2*f))//Thickness of the plate in m
+
+//Output
+printf('The thickness of the steel plate is %3.2f m',d)
diff --git a/1985/CH8/EX8.4/Chapter8_Example4.sce b/1985/CH8/EX8.4/Chapter8_Example4.sce new file mode 100755 index 000000000..b00571725 --- /dev/null +++ b/1985/CH8/EX8.4/Chapter8_Example4.sce @@ -0,0 +1,14 @@ +clc
+clear
+//Input data
+//f=(2.87*10^3)/t The fundamental frequency in terms of thickness
+x=(2.87*10^3)//x value from function
+d=2660//Density in kg/m^3
+f=1200//Frequency of vibration in kHz
+
+//Calculations
+Y=(2*2*x^2*d)/10^10//Youngs modulus in N/m^2*10^10
+t=((1/(2*f*1000))*sqrt((Y*10^10)/d))/10^-3//Thickness in m*10^-3
+
+//Output
+printf('Youngs modulus of the quartz crystal is %3.2f *10^10 N/m^2 \n The thickness of the crystal is %3.2f *10^-3 m',Y,t)
diff --git a/1985/CH9/EX9.1/Chapter9_Example1.sce b/1985/CH9/EX9.1/Chapter9_Example1.sce new file mode 100755 index 000000000..54eb0fad1 --- /dev/null +++ b/1985/CH9/EX9.1/Chapter9_Example1.sce @@ -0,0 +1,13 @@ +clc
+clear
+//Input data
+V=150//Potential difference in V
+h=(6.625*10^-34)//Plancks constant in Js
+m=(9.1*10^-31)//Mass of the electron in kg
+e=(1.6*10^-19)//Charge of the electron in coloumbs
+
+//Calculations
+l=(h/sqrt(2*m*e*V))/10^-10//de Broglie wavelength of the electron in m*10^-10
+
+//Output
+printf('The de Broglie wavelength of an electron is %3.4f *10^-10 m',l)
diff --git a/1985/CH9/EX9.2/Chapter9_Example2.sce b/1985/CH9/EX9.2/Chapter9_Example2.sce new file mode 100755 index 000000000..a3ee6736f --- /dev/null +++ b/1985/CH9/EX9.2/Chapter9_Example2.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+E=0.025//Energy of the electron in MeV
+e=(1.6*10^-19)//Charge of the electron in coloumbs
+h=(6.625*10^-34)//Plancks constant in Js
+m=(9.1*10^-31)//Mass of the electron in kg
+
+//Calculations
+E1=E*e*10^6//Energy of the electron in J
+v=sqrt((2*E1)/m)//Velocity of the electron in m/s
+l=(h/(m*v))/10^-10//de Broglie wavelength in angstroms
+
+//Output
+printf('The de Broglie wavelength is %3.4f angstroms',l)
diff --git a/1985/CH9/EX9.3/Chapter9_Example3.sce b/1985/CH9/EX9.3/Chapter9_Example3.sce new file mode 100755 index 000000000..2d8836655 --- /dev/null +++ b/1985/CH9/EX9.3/Chapter9_Example3.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+E=1//Energy of the electron in MeV
+e=(1.6*10^-19)//Charge of the electron in coloumbs
+h=(6.625*10^-34)//Plancks constant in Js
+m=(9.1*10^-31)//Mass of the electron in kg
+
+//Calculations
+E1=E*e*10^6//Energy of the electron in J
+v=sqrt((2*E1)/m)//Velocity of the electron in m/s
+l=(h/(m*v))/10^-10//de Broglie wavelength in angstroms
+
+//Output
+printf('The de Broglie wavelength is %3.5f angstroms',l)
diff --git a/1985/CH9/EX9.4/Chapter9_Example4.sce b/1985/CH9/EX9.4/Chapter9_Example4.sce new file mode 100755 index 000000000..a6c20ab45 --- /dev/null +++ b/1985/CH9/EX9.4/Chapter9_Example4.sce @@ -0,0 +1,18 @@ +clc
+clear
+//Input data
+V=100//Potential difference in V
+e=(1.6*10^-19)//Charge of the electron in coloumbs
+h=(6.625*10^-34)//Plancks constant in Js
+m=(9.1*10^-31)//Mass of the electron in kg
+c=(3*10^8)//Velocity of light in m/s
+
+//Calculations
+v=sqrt((2*e*V)/m)/10^6//Velocity of the electron in m/s*10^6
+u=(c^2/(v*10^6))/10^10//Phase velocity of the electron in m/s *10^10
+l=(h/(m*(v*10^6)))/10^-10//de Broglie wavelength in angstroms
+p=(m*(v*10^6))/10^-24//Momemtum of the electron in kg.m/s *10^-24
+V1=(1/(l*10^-10))/10^9//Wave number of the electron wave in m^-1
+
+//Output
+printf('(i) Velocity of the electron is %3.5f*10^6 m/s \n (ii) Phase velocity of the electron is %3.4f*10^10 m/s \n (iii) de Broglie wavelength is %3.5f angstroms \n (iv) Momemtum of the electron is %3.6f *10^-24 kg.m/s \n (v) Wave number of the electron wave is %3.6f *10^9 m^-1',v,u,l,p,V1)
diff --git a/1985/CH9/EX9.5/Chapter9_Example5.sce b/1985/CH9/EX9.5/Chapter9_Example5.sce new file mode 100755 index 000000000..a8092c344 --- /dev/null +++ b/1985/CH9/EX9.5/Chapter9_Example5.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+r=10^-14//Radius of the nucleus in m
+m=(1.67*10^-27)//Mass of the proton in kg
+h=(6.625*10^-34)//Plancks constant in Js
+
+//Calculations
+x=6.24150934*10^12//1 Joule in MeV
+dp=(h/(2*3.14*r))/10^-20//The uncertainity in the momentum of the proton in kg m/s *10^-20
+ke=((dp*10^-20)^2/(2*m))*x//Minimum kinetic energy of the proton in MeV
+
+//Output
+printf('The uncertainity in the momentum of the proton is %3.3f*10^-20 kg m/s \n Minimum kinetic energy of the proton is %3.3f MeV',dp,ke)
+
diff --git a/1985/CH9/EX9.6/Chapter9_Example6.sce b/1985/CH9/EX9.6/Chapter9_Example6.sce new file mode 100755 index 000000000..f69c78ccb --- /dev/null +++ b/1985/CH9/EX9.6/Chapter9_Example6.sce @@ -0,0 +1,11 @@ +clc
+clear
+//Input data
+dx=(0.1*10^-10)//The uncertainity in the position of the electron in m
+h=(6.625*10^-34)//Plancks constant in Js
+
+//Calculations
+dp=(h/(2*3.14*dx))/10^-23//The uncertainity in the momentum of the electron located in kg m/s*10^-23
+
+//Output
+printf('The uncertainity in the momentum of the electron located is %3.3f*10^-23 kg m/s',dp)
diff --git a/1985/CH9/EX9.7/Chapter9_Example7.sce b/1985/CH9/EX9.7/Chapter9_Example7.sce new file mode 100755 index 000000000..fa4e9bbad --- /dev/null +++ b/1985/CH9/EX9.7/Chapter9_Example7.sce @@ -0,0 +1,15 @@ +clc
+clear
+//Input data
+a=(1*10^-10)//Width of the potential well in m
+m=(9.1*10^-31)//Mass of the electron in kg
+h=(6.625*10^-34)//Plancks constant in Js
+
+//Calculations
+x=6.24150934*10^18//1 Joule in eV
+E1=((h^2*1^2)/(8*m*a^2))*x//The energy of the first excited state in eV
+E2=((h^2*2^2)/(8*m*a^2))*x//The energy of the second excited state in eV
+E3=((h^2*3^2)/(8*m*a^2))*x//The energy of the third excited state in eV
+
+//Output
+printf('The energy of the first excited state is %3.3f eV \n The energy of the second excited state is %3.3f eV \n The energy of the third excited state is %3.3f eV',E1,E2,E3)
|