summaryrefslogtreecommitdiff
path: root/1979/CH9
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1979/CH9
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1979/CH9')
-rwxr-xr-x1979/CH9/EX9.1/Ex9_1.sce15
-rwxr-xr-x1979/CH9/EX9.10/Ex9_10.sce19
-rwxr-xr-x1979/CH9/EX9.11/Ex9_11.sce20
-rwxr-xr-x1979/CH9/EX9.12/Ex9_12.sce26
-rwxr-xr-x1979/CH9/EX9.13/Ex9_13.sce37
-rwxr-xr-x1979/CH9/EX9.2/Ex9_2.sce17
-rwxr-xr-x1979/CH9/EX9.3/Ex9_3.sce23
-rwxr-xr-x1979/CH9/EX9.4/Ex9_4.sce20
-rwxr-xr-x1979/CH9/EX9.5/Ex9_5.sce16
-rwxr-xr-x1979/CH9/EX9.6/Ex9_6.sce19
-rwxr-xr-x1979/CH9/EX9.7/Ex9_7.sce17
-rwxr-xr-x1979/CH9/EX9.8/Ex9_8.sce19
-rwxr-xr-x1979/CH9/EX9.9/Ex9_9.sce22
13 files changed, 270 insertions, 0 deletions
diff --git a/1979/CH9/EX9.1/Ex9_1.sce b/1979/CH9/EX9.1/Ex9_1.sce
new file mode 100755
index 000000000..bc548009f
--- /dev/null
+++ b/1979/CH9/EX9.1/Ex9_1.sce
@@ -0,0 +1,15 @@
+//chapter-9 page 411 example 9.1
+//==============================================================================
+clc;
+clear;
+
+L=2*10^(-6);//Drift Length of a IMPATT diode in m
+Vd=(10^7)*(10^(-2));//Drift Velocity for Siin m/sec
+
+//CALCULATION
+f=(Vd/(2*L))/10^9;//Operating Frequency in GHz
+
+//OUTPUT
+mprintf('\nOperating Frequency of the IMPATT diode is f=%2.0f GHz',f);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH9/EX9.10/Ex9_10.sce b/1979/CH9/EX9.10/Ex9_10.sce
new file mode 100755
index 000000000..bfacb2d9e
--- /dev/null
+++ b/1979/CH9/EX9.10/Ex9_10.sce
@@ -0,0 +1,19 @@
+//chapter-9 page 413 example 9.10
+//==============================================================================
+clc;
+clear;
+
+//For an IMPATT diode
+L=2*10^(-6);//Drift Length in m
+Vd=10^5;//Carrier Drift Velocity (Assume/Consider) in m/sec
+
+//CALCULATION
+t=(L/Vd)/10^(-9);//Drift Time of the Carrier in nano sec [From f=(1/2t)=(Vd/2L)]
+t1=t*10^(-9);
+f=(1/(2*t1))/10^9;//Operating Frequency of the diode in GHz
+
+//OUTPUT
+mprintf('\nDrift Time of the Carrier is t=%1.2f nano sec \nOperating Frequency of the diode is f=%2.0f GHz',t,f);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH9/EX9.11/Ex9_11.sce b/1979/CH9/EX9.11/Ex9_11.sce
new file mode 100755
index 000000000..7f7048a59
--- /dev/null
+++ b/1979/CH9/EX9.11/Ex9_11.sce
@@ -0,0 +1,20 @@
+//chapter-9 page 413 example 9.11
+//==============================================================================
+clc;
+clear;
+
+//For an M-Si-M Basitt diode
+er=11.8;//Relative dielectric constant of Si
+e0=8.854*10^(-12);//Permittivity of freespace in F/m
+N=3*10^(21);//Donor Concentration per m^3
+L=6.2*10^(-6);//Si Length in m
+q=1.6*10^(-19);//Charge of an Electron in C
+
+//CALCULATION
+Vbd=((q*N*L^2)/(er*e0));//Breakdown Voltage in V
+Ebd=(Vbd/L)/10^3;//Breakdown Electric Field in kV/m
+
+//OUTPUT
+mprintf('\nBreakdown Voltage is Vbd=%3.1f V \nBreakdown Electric Field is Ebd=%5.0f kV/m',Vbd,Ebd);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH9/EX9.12/Ex9_12.sce b/1979/CH9/EX9.12/Ex9_12.sce
new file mode 100755
index 000000000..d48e4ae82
--- /dev/null
+++ b/1979/CH9/EX9.12/Ex9_12.sce
@@ -0,0 +1,26 @@
+//chapter-9 page 413 example 9.12
+//==============================================================================
+clc;
+clear;
+
+//For an upconverter parametric amplifier
+rQ=8;//figure of merit for a diode nonlinear capacitor
+r=0.2;
+y=8;//ratio of output frequency over signal frequency (f0/fs)
+Td=300;//Diode Temperature in K
+T0=300;//Ambient Temperature in K
+
+//CALCULATION
+X=((rQ)^2)/y;
+G=((y*X)/(1+sqrt(1+X))^2);//Max power gain
+GdB=10*log10(G);//Maximum Power Gain in dB
+F=(1+((2*Td/T0)*((1/rQ)+(1/rQ)^2)));//Noise Figure
+FdB=10*log10(F);//Noise Figure in dB
+BW=2*r*sqrt(y);//Bandwidth
+
+//OUTPUT
+mprintf('\nMaximum Power Gain is GdB=%1.2f dB\nNoise Figure is FdB=%1.2f dB \nBandWidth is BW=%1.2f',GdB,FdB,BW);
+
+//=========================END OF PROGRAM===============================
+
+
diff --git a/1979/CH9/EX9.13/Ex9_13.sce b/1979/CH9/EX9.13/Ex9_13.sce
new file mode 100755
index 000000000..76fdfb76d
--- /dev/null
+++ b/1979/CH9/EX9.13/Ex9_13.sce
@@ -0,0 +1,37 @@
+//chapter-9 page 414 example 9.13
+//==============================================================================
+clc;
+clear;
+
+//For a negative resistance parametric amplifier
+fs=2*10^9;//Signal Frequency in Hz
+fp=12*10^9;//pump Frequency in Hz
+fi=10*10^9;//idler Frequency in Hz
+fd=5*10^9;//Frequency in Hz
+Ri=1000;//o/p resistance of idler generator in ohms
+Rg=1000;//o/p resistance of signal generator in ohms
+RTs=1000;//total series resistance at fs in ohms
+RTi=1000;//total series resistance at fi in ohms
+r=0.35;
+rQ=10;//figure of merit
+Td=300;//Avg Diode Temperature in K
+T0=300;//Ambient Temperature in K
+C=0.01*10^(-12);//Capacitance in F
+
+//CALCULATION
+ws=2*(%pi)*fs;
+wi=2*(%pi)*fi;
+R=((r^2)/(ws*wi*RTi*C^2));//Equivalent noise resistance in ohms
+a=(R/RTs);
+G=((4*fi*a*Rg*Ri)/(fs*RTs*RTi*(1-a)^2));//Gain
+GdB=10*log10(G);//Gain in dB
+F=(1+((2*Td/T0)*((1/rQ)+(1/rQ)^2)));//Noise Figure
+FdB=10*log10(F);//Noise Figure in dB
+BW=((r/2)*(sqrt(fd/(fs*G))));
+
+//OUTPUT
+mprintf('\nEquivalent noise resistance is R=%4.1f ohms\nGain is GdB=%2.1f dB\nNoise Figure is FdB=%1.2f dB \nBandWidth is BW=%1.3f',R,GdB,FdB,BW);
+
+//=========================END OF PROGRAM===============================
+
+//Note: Check the Bandwidth answer is once It should be 0.027
diff --git a/1979/CH9/EX9.2/Ex9_2.sce b/1979/CH9/EX9.2/Ex9_2.sce
new file mode 100755
index 000000000..393603fad
--- /dev/null
+++ b/1979/CH9/EX9.2/Ex9_2.sce
@@ -0,0 +1,17 @@
+//chapter-9 page 411 example 9.2
+//==============================================================================
+clc;
+clear;
+
+L=75*10^(-6);//Device Length in m
+V=25;//Voltage Pulse Amplified in V
+f=10*10^9;//Operating Frequency in Hz
+
+//CALCULATION
+Eth=(V/L)/10^5;//Threshold Electric Field in kV/cm
+
+//OUTPUT
+mprintf('\nThreshold Electric Field is Eth=%1.2f kV/cm',Eth);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH9/EX9.3/Ex9_3.sce b/1979/CH9/EX9.3/Ex9_3.sce
new file mode 100755
index 000000000..3cdb1e290
--- /dev/null
+++ b/1979/CH9/EX9.3/Ex9_3.sce
@@ -0,0 +1,23 @@
+//chapter-9 page 411 example 9.3
+//==============================================================================
+clc;
+clear;
+
+fs=2*10^9;//Signal Frequency in Hz
+fp=12*10^9//Pump Frequency in Hz
+Ri=16;//O/P resistance of signal generator in ohms
+Rs=1000;//On types resistance of signal generator in ohms
+
+//CALCULATION
+P=10*log10((fp-fs)/fs);//Power gain in dB
+Pusb=10*log10((fp+fs)/fs);//Power gain as USB converter in dB
+
+//OUTPUT
+mprintf('\nPower gain is P=%1.2f dB \nPower gain as USB converter is Pusb=%1.2f dB',P,Pusb);
+
+//=========================END OF PROGRAM===============================
+
+
+//Note: Answer given in textbook is wrong Check it once..
+//Correct answers are Power gain is P=6.99 dB
+// Power gain as USB converter is Pusb=8.45 dB
diff --git a/1979/CH9/EX9.4/Ex9_4.sce b/1979/CH9/EX9.4/Ex9_4.sce
new file mode 100755
index 000000000..496733d30
--- /dev/null
+++ b/1979/CH9/EX9.4/Ex9_4.sce
@@ -0,0 +1,20 @@
+//chapter-9 page 411 example 9.4
+//==============================================================================
+clc;
+clear;
+
+es=12.5;//Relative Dielectric constant
+e0=8.854*10^(-12);//Permittivity in Free Space in F/m
+N=3.2*10^22;//Donor Concentration per m^3
+L=8*10^(-6);//Length of Si BARITT diode in m
+q=1.6*10^(-19);//Charge of an Electron in C
+
+//CALCULATION
+Vc=((q*N*L^2)/(2*es*e0))/10^3;//Critical Voltage in kV
+Vbd=2*Vc;//Breakdown Voltage in kV
+Ebd=(Vbd/L)/100;//Breakdown Electric Field in kV/cm
+
+//OUTPUT
+mprintf('\nCritical Voltage is Vc=%1.2f kV \nBreakdown Voltage is Vbd=%1.2f kV \nBreakdown Electric Field is Ebd=%6.2f kV/cm',Vc,Vbd,Ebd);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH9/EX9.5/Ex9_5.sce b/1979/CH9/EX9.5/Ex9_5.sce
new file mode 100755
index 000000000..a63317867
--- /dev/null
+++ b/1979/CH9/EX9.5/Ex9_5.sce
@@ -0,0 +1,16 @@
+//chapter-9 page 412 example 9.5
+//==============================================================================
+clc;
+clear;
+
+J=33000;//Current density in A/sqcm
+Na=2.5*10^16;//Doping Concentation in TRAPATT diode per cubic cm
+q=1.6*10^(-19);//Charge of an Electron in C
+
+//CALCULATION
+Vz=(J/(q*Na))/10^5;//Avalanche Zone Velocity in Km/sec
+
+//OUTPUT
+mprintf('\nAvalanche Zone Velocity is Vz=%2.1f Km/sec',Vz);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH9/EX9.6/Ex9_6.sce b/1979/CH9/EX9.6/Ex9_6.sce
new file mode 100755
index 000000000..663f23577
--- /dev/null
+++ b/1979/CH9/EX9.6/Ex9_6.sce
@@ -0,0 +1,19 @@
+//chapter-9 page 412 example 9.6
+//==============================================================================
+clc;
+clear;
+
+//For an IMPATT diode power amplifier
+Rd=25;//Negative Resistance in ohms
+Rl=50;//Load Resistance in ohms
+
+//CALCULATION
+x=abs(Rd);
+G=((-x-Rl)/(-x+Rl))^2;//Power gain of an IMPATT diode
+
+//OUTPUT
+mprintf('\nPower gain of an IMPATT diode is G=%1.0f',G);
+
+//=========================END OF PROGRAM===============================
+
+
diff --git a/1979/CH9/EX9.7/Ex9_7.sce b/1979/CH9/EX9.7/Ex9_7.sce
new file mode 100755
index 000000000..fd7d34a47
--- /dev/null
+++ b/1979/CH9/EX9.7/Ex9_7.sce
@@ -0,0 +1,17 @@
+//chapter-9 page 412 example 9.7
+//==============================================================================
+clc;
+clear;
+
+//For a Gunn Diode
+L=5*10^(-4);//Drift Length in cm
+Vg=3300;//Voltage gradient in V/cm [Vg>3.3 kV/cm]
+
+//CALCULATION
+Vmin=Vg*L;//Minimum Voltage needed to initiate Gunn effect in volts
+
+//OUTPUT
+mprintf('\nMinimum Voltage needed to initiate Gunn effect is Vmin=%1.2f volts',Vmin);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH9/EX9.8/Ex9_8.sce b/1979/CH9/EX9.8/Ex9_8.sce
new file mode 100755
index 000000000..b975d7cd3
--- /dev/null
+++ b/1979/CH9/EX9.8/Ex9_8.sce
@@ -0,0 +1,19 @@
+//chapter-9 page 412 example 9.8
+//==============================================================================
+clc;
+clear;
+
+//For a Gunn Diode
+L=20*10^(-4);//Active Length in cm
+Vd=2*10^7;//Drift Velocity of Electrons in cm/sec
+Ec=3.3*10^3;//Criticl Field for GaAs in V/cm
+
+//CALCULATION
+fn=(Vd/L)/10^9;//Natural(Rational) Frequency in GHz
+Vc=L*Ec;//Critical Voltage of the diode in volts
+
+//OUTPUT
+mprintf('\nNatural(Rational) Frequency is fn=%2.0f GHz \nCritical Voltage of the diode is Vc=%1.1f volts',fn,Vc);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH9/EX9.9/Ex9_9.sce b/1979/CH9/EX9.9/Ex9_9.sce
new file mode 100755
index 000000000..13b06996a
--- /dev/null
+++ b/1979/CH9/EX9.9/Ex9_9.sce
@@ -0,0 +1,22 @@
+//chapter-9 page 412 example 9.9
+//==============================================================================
+clc;
+clear;
+
+//For an IMPATT diode
+Lp=0.5*10^(-9);//Inductance in Henry
+Cj=0.5*10^(-12);//Capacitance in Farad
+Ip=0.8;//RF peak current in A
+Rl=2;//Load Resistance in ohms
+Vbd=100;//Breakdown Voltage in V
+Ib=0.1;//dc Bias current in A
+
+//CALCULATION
+f=(1/(2*(%pi)*sqrt(Lp*Cj)))/10^9;//Resonant Frequency in GHz
+n=((Rl*Ip^2)/(2*Vbd*Ib))*100;//Efficiency in Percentage
+
+//OUTPUT
+mprintf('\nResonant Frequency is f=%2.0f GHz \nEfficiency is n=%1.1f percentage',f,n);
+
+//=========================END OF PROGRAM===============================
+