diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1979/CH10 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1979/CH10')
-rwxr-xr-x | 1979/CH10/EX10.1/Ex10_1.sce | 19 | ||||
-rwxr-xr-x | 1979/CH10/EX10.10/Ex10_10.sce | 17 | ||||
-rwxr-xr-x | 1979/CH10/EX10.11/Ex10_11.sce | 21 | ||||
-rwxr-xr-x | 1979/CH10/EX10.12/Ex10_12.sce | 19 | ||||
-rwxr-xr-x | 1979/CH10/EX10.13/Ex10_13.sce | 16 | ||||
-rwxr-xr-x | 1979/CH10/EX10.2/Ex10_2.sce | 16 | ||||
-rwxr-xr-x | 1979/CH10/EX10.3/Ex10_3.sce | 24 | ||||
-rwxr-xr-x | 1979/CH10/EX10.4/Ex10_4.sce | 26 | ||||
-rwxr-xr-x | 1979/CH10/EX10.5/Ex10_5.sce | 18 | ||||
-rwxr-xr-x | 1979/CH10/EX10.6/Ex10_6.sce | 24 | ||||
-rwxr-xr-x | 1979/CH10/EX10.7/Ex10_7.sce | 18 | ||||
-rwxr-xr-x | 1979/CH10/EX10.8/Ex10_8.sce | 17 | ||||
-rwxr-xr-x | 1979/CH10/EX10.9/Ex10_9.sce | 21 |
13 files changed, 256 insertions, 0 deletions
diff --git a/1979/CH10/EX10.1/Ex10_1.sce b/1979/CH10/EX10.1/Ex10_1.sce new file mode 100755 index 000000000..4d17bbc53 --- /dev/null +++ b/1979/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,19 @@ +//chapter-10 page 486 example 10.1
+//==============================================================================
+clc;
+clear;
+
+ht=144;//TV transmitter antenna height in m
+hr=25;//TV receiver antenna height in m
+//Radio horizon is about 4/3 as far as the optical horizon
+
+//CALCULATION
+dr=4*sqrt(hr);//distance in km
+dt=4*sqrt(ht);//Radio Horizon in km
+d=dt+dr;//The Maximum distance of Propagation of the TV signal in km
+
+//OUTPUT
+mprintf('\nThe Maximum distance of Propagation of the TV signal is d=%2.0f km \nRadio Horizon is dt=%2.0f km',d,dt);
+
+//=========================END OF PROGRAM===============================
+
diff --git a/1979/CH10/EX10.10/Ex10_10.sce b/1979/CH10/EX10.10/Ex10_10.sce new file mode 100755 index 000000000..60f0eef06 --- /dev/null +++ b/1979/CH10/EX10.10/Ex10_10.sce @@ -0,0 +1,17 @@ +//chapter-10 page 489 example 10.10
+//==============================================================================
+clc;
+clear;
+
+//For a parabolic antenna
+Gp=1500;//Power gain
+w=0.1;//wavelength in m
+
+//CALCULATION
+D=sqrt(Gp)*(w/(%pi));//Diameter of the circular mouth of a parabolic antenna in m
+HPBW=58*(w/D);//Half Power BeamWidth of the antenna in deg
+
+//OUTPUT
+mprintf('\nDiameter of the circular mouth of a parabolic antenna is D=%1.4f m \nHalf Power BeamWidth of the antenna is HPBW=%1.3f deg',D,HPBW);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH10/EX10.11/Ex10_11.sce b/1979/CH10/EX10.11/Ex10_11.sce new file mode 100755 index 000000000..bcf82566e --- /dev/null +++ b/1979/CH10/EX10.11/Ex10_11.sce @@ -0,0 +1,21 @@ +//chapter-10 page 490 example 10.11
+//==============================================================================
+clc;
+clear;
+
+D=1;//Assume diameter of the parabolic reflectors in the original system in m
+w=1;//Assume wavelength in m
+
+//CALCULATION
+D1=2*D;//diameter of the parabolic reflectors in the modified system in m
+G=6*(D/w)^2;//gain in original system
+G1=6*(D1/w)^2;//gain in modified system
+GdB=10*log10(G1/G);//Overall gain that can be expected in dB
+GdBo=2*GdB;//Overall gain of the system(combining the two antennas one at the Tx and other at the Rx) in dB
+
+//OUTPUT
+mprintf('\nOverall gain that can be expected is GdB=%1.0f dB \nOverall gain of the system(combining the two antennas one at the Tx and other at the Rx) is GdBo=%1.0f dB',GdB,GdBo);
+
+//=========================END OF PROGRAM===============================
+
+//Note: Check the answer once ..it should be GdB=10log(4)=6 dB and GdBo=12dB
diff --git a/1979/CH10/EX10.12/Ex10_12.sce b/1979/CH10/EX10.12/Ex10_12.sce new file mode 100755 index 000000000..cf2eb48a8 --- /dev/null +++ b/1979/CH10/EX10.12/Ex10_12.sce @@ -0,0 +1,19 @@ +//chapter-10 page 490 example 10.12
+//==============================================================================
+clc;
+clear;
+
+D=3;//dimension of a paraboloid in m
+f=3*10^9;//frequency (S band) in Hz
+c=3*10^8;//Velocity of light in m/sec
+
+//CALCULATION
+w=c/f;//wave length in m
+BWFN=140*(w/D);//BeamWidth between First Nulls in deg
+BWHP=70*(w/D);//BeamWidth between HalfPower points in deg
+G=6*(D/w)^2;//Gain of the antenna
+
+//OUTPUT
+mprintf('\nBeamWidth between First Nulls is BWFN=%1.2f deg \nBeamWidth between HalfPower points is BWHP=%1.2f deg \nGain of the Antenna is G=%4.0f ',BWFN,BWHP,G);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH10/EX10.13/Ex10_13.sce b/1979/CH10/EX10.13/Ex10_13.sce new file mode 100755 index 000000000..bf7d8e4a5 --- /dev/null +++ b/1979/CH10/EX10.13/Ex10_13.sce @@ -0,0 +1,16 @@ +//chapter-10 page 490 example 10.13
+//==============================================================================
+clc;
+clear;
+
+l=1;//(Assume)-dimension(wavelength) in cm
+
+//CALCULATION
+x=5*l;//given square aperture of an optimum horn antenna as a side dimension in cm
+A=x*x;//Area in sq.cm
+Gp=4.5*(A/l^2);//Power gain of an optimum horn antenna
+
+//OUTPUT
+mprintf('\nPower gain of an optimum horn antenna is Gp=%3.1f ',Gp);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH10/EX10.2/Ex10_2.sce b/1979/CH10/EX10.2/Ex10_2.sce new file mode 100755 index 000000000..bec58f0a9 --- /dev/null +++ b/1979/CH10/EX10.2/Ex10_2.sce @@ -0,0 +1,16 @@ +//chapter-10 page 486 example 10.2
+//==============================================================================
+clc;
+clear;
+
+r=6370*10^3;//radius of the earth in m
+x=-0.05*10^(-6);//the gradient of refractive index of air near the ground per m [du/dh]
+
+//CALCULATION
+k=1/(1+(r*x));//The value of the factor by which the horizon distance of a transmitter will be modified
+
+//OUTPUT
+mprintf('\nThe value of the factor by which the horizon distance of a transmitter will be modified is k=%1.4f',k);
+
+//=========================END OF PROGRAM===================================
+
diff --git a/1979/CH10/EX10.3/Ex10_3.sce b/1979/CH10/EX10.3/Ex10_3.sce new file mode 100755 index 000000000..2e48e2fe5 --- /dev/null +++ b/1979/CH10/EX10.3/Ex10_3.sce @@ -0,0 +1,24 @@ +//chapter-10 page 487 example 10.3
+//==============================================================================
+clc;
+clear;
+
+//For a microwave LOS link
+f=2*10^9;//frequency of operation in Hz
+c=3*10^8;//Velocity of light in m/sec
+r=50000;//repeater spacing in m
+PrdBm=-20;//required carrier power at the receiver i/p to avoid deterioration due to fading and noise in dBm
+GtdB=34;//antenna gain of transmitter in dB
+GrdB=34;//antenna gain of receiver in dB
+LdB=10;//coupling and waveguide loss in transmitter in dB
+
+//CALULATION
+w=c/f;//wavelength in m
+x=(w^2)/(4*(%pi));
+y=(4*(%pi)*r^2);
+PtdBm=PrdBm+(10*log10(y))-GtdB-(10*log10(x))+LdB-GrdB;//The required Carrier Transmitter power in dBm
+
+//OUTPUT
+mprintf('\nThe required Carrier Transmitter power is PtdBm=%2.1f dBm',PtdBm);
+
+//=========================END OF PROGRAM===================================
diff --git a/1979/CH10/EX10.4/Ex10_4.sce b/1979/CH10/EX10.4/Ex10_4.sce new file mode 100755 index 000000000..b53ce2bee --- /dev/null +++ b/1979/CH10/EX10.4/Ex10_4.sce @@ -0,0 +1,26 @@ +//chapter-10 page 487 example 10.4
+//==============================================================================
+clc;
+clear;
+
+//For a geostationary communication satellite
+f=6*10^(9);//uplink frequency in Hz
+Pt=1000;//Transmitter power in W
+x=36000*10^3;//vertical distance between surface of earth and satellite in m
+a=5;//antenna elevation angle in deg
+GtdB=60;//antenna gain of transmitter in dB
+GrdB=0;//antenna gain of receiver in dB
+c=3*10^8;//Velocity of light in m/sec
+
+//CALCULATION
+Gt=10^(GtdB/10);//antenna gain of transmitter
+Gr=10^(GrdB/10);//antenna gain of receiver
+w=c/f;//wavelength in m
+Ar=(w^2)*(Gr/(4*(%pi)));//area in sqm
+r=x/(sind(a));//distance between transmitter and receiver in m [From Sine formula and diagram]
+Pr=((Pt*Gt*Ar)/(4*(%pi)*r^2))/10^(-12);//The received power at the input of the satellite receiver in pico watts
+
+//OUTPUT
+mprintf('\nThe received power at the input of the satellite receiver is Pr=%1.2f pico watts(pW)',Pr);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH10/EX10.5/Ex10_5.sce b/1979/CH10/EX10.5/Ex10_5.sce new file mode 100755 index 000000000..9a8fd6658 --- /dev/null +++ b/1979/CH10/EX10.5/Ex10_5.sce @@ -0,0 +1,18 @@ +//chapter-10 page 487 example 10.5
+//==============================================================================
+clc;
+clear;
+
+x1=35855;//Distance between geostationary orbit to surface of earth in km
+x2=6371;//Distance between center of earth to surface of earth in km
+
+//CALCULATION
+x=x1+x2;//distance of satellite from center of earth in km
+y=x2*(%pi);//Circumference of half circle arc in km
+b=y/x;//Beam angle in rad
+Bdeg=(b*180)/(%pi);//Beam angle in deg
+
+//OUTPUT
+mprintf('\nAntenna Beam angle required by a satellite antenna to provide full global coverage from a geostationary orbit is Bdeg=%2.2f deg',Bdeg);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH10/EX10.6/Ex10_6.sce b/1979/CH10/EX10.6/Ex10_6.sce new file mode 100755 index 000000000..a43255849 --- /dev/null +++ b/1979/CH10/EX10.6/Ex10_6.sce @@ -0,0 +1,24 @@ +//chapter-10 page 488 example 10.6
+//==============================================================================
+clc;
+clear;
+
+//For a satellite communication system
+h=35855;//Distance between geostationary orbit to surface of earth in km
+r=6371;//Distance between center of earth to surface of earth in km
+a=5;//earth station elevation angle wrt the geostationary satellite in deg
+b=5;//angle in deg
+c=3*10^5;//Velocity of light in km/sec
+b1=90;//angle for vertical transmission in deg
+a1=0;
+
+//CALCULATION
+d=(sqrt((r+h)^2-(r*cosd(a))^2))-sind(b);//distance in km
+T=2*(d/c);//The round trip time between the earth station and the satellite in sec
+d1=(sqrt((r+h)^2-(r*cosd(a))^2))-sind(b);//distance in km
+Tv=(2/c)*(d1-r);//The round trip time for vertical transmission between the earth station and the satellite in sec
+
+//OUTPUT
+mprintf('\nThe round trip time between the earth station and the satellite is T=%1.3f sec \nThe round trip time for vertical transmission between the earth station and the satellite is Tv=%1.3f sec',T,Tv);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH10/EX10.7/Ex10_7.sce b/1979/CH10/EX10.7/Ex10_7.sce new file mode 100755 index 000000000..bddf1303c --- /dev/null +++ b/1979/CH10/EX10.7/Ex10_7.sce @@ -0,0 +1,18 @@ +//chapter-10 page 488 example 10.7
+//==============================================================================
+clc;
+clear;
+
+Tant=25;//effective noise temperature in K
+Tr=75;//receiver noise temperature in K
+GdB=45;//Isotropic power gain of the antenna in dB
+
+//CALCULATION
+T=Tant+Tr;//The total noise in K
+TdB=10*log10(T);//The total noise in dB
+MdB=GdB-TdB;//Figure of merit of earth station in dB
+
+//OUTPUT
+mprintf('\nFigure of merit of earth station is MdB=%2.0f dB',MdB);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH10/EX10.8/Ex10_8.sce b/1979/CH10/EX10.8/Ex10_8.sce new file mode 100755 index 000000000..557b39347 --- /dev/null +++ b/1979/CH10/EX10.8/Ex10_8.sce @@ -0,0 +1,17 @@ +//chapter-10 page 488 example 10.8
+//==============================================================================
+clc;
+clear;
+
+//For a Satellite communication link
+EIRPdB=55.5;//Satellite ESM in dBW
+MdB=35;//G/T ratio of earth station in dB
+LfsdB=245.3//Freespace loss in dB
+
+//CALCULATION
+CNRdB=EIRPdB+MdB-LfsdB+228.6;//Carrier to Noise Ratio at the earth station receiver in dB
+
+//OUTPUT
+mprintf('\nCarrier to Noise Ratio at the earth station receiver is CNRdB=%2.1f dB',CNRdB);
+
+//=========================END OF PROGRAM===============================
diff --git a/1979/CH10/EX10.9/Ex10_9.sce b/1979/CH10/EX10.9/Ex10_9.sce new file mode 100755 index 000000000..49119d868 --- /dev/null +++ b/1979/CH10/EX10.9/Ex10_9.sce @@ -0,0 +1,21 @@ +//chapter-10 page 489 example 10.9
+//==============================================================================
+clc;
+clear;
+
+D=30;//Diameter of a dish antenna with circular aperture in m
+f=4*10^9;//down link frequency in Hz
+MdB=20;//G/T ratio of earth station in dB
+c=3*10^8;//Velocity of light in m/sec
+
+//CALCULATION
+A=((%pi)/4)*D^2;//area in sqm
+w=c/f;//wavelength in m
+G=(4*(%pi)*A)/w^2;//Gain
+GdB=10*log10(G);//Gain in dB
+TsdB=GdB-MdB;//The System Noise Temperature in dB
+
+//OUTPUT
+mprintf('\nThe System Noise Temperature is TsdB=%2.2f dB',TsdB);
+
+//=========================END OF PROGRAM===============================
|