diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1970/CH4 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1970/CH4')
-rwxr-xr-x | 1970/CH4/EX4.1/Ch04Exa1.sce | 11 | ||||
-rwxr-xr-x | 1970/CH4/EX4.10/Ch04Exa10.sce | 11 | ||||
-rwxr-xr-x | 1970/CH4/EX4.11/Ch04Exa11.sce | 9 | ||||
-rwxr-xr-x | 1970/CH4/EX4.12/Ch04Exa12.sce | 33 | ||||
-rwxr-xr-x | 1970/CH4/EX4.13/Ch04Exa13.sce | 11 | ||||
-rwxr-xr-x | 1970/CH4/EX4.14/Ch04Exa14.sce | 15 | ||||
-rwxr-xr-x | 1970/CH4/EX4.15/Ch04Exa15.sce | 14 | ||||
-rwxr-xr-x | 1970/CH4/EX4.16/Ch04Exa16.sce | 15 | ||||
-rwxr-xr-x | 1970/CH4/EX4.2/Ch04Exa2.sce | 13 | ||||
-rwxr-xr-x | 1970/CH4/EX4.3/Ch04Exa3.sce | 18 | ||||
-rwxr-xr-x | 1970/CH4/EX4.4/Ch04Exa4.sce | 14 | ||||
-rwxr-xr-x | 1970/CH4/EX4.5/Ch04Exa5.sce | 11 | ||||
-rwxr-xr-x | 1970/CH4/EX4.6/Ch04Exa6.sce | 9 | ||||
-rwxr-xr-x | 1970/CH4/EX4.7/Ch04Exa7.sce | 13 | ||||
-rwxr-xr-x | 1970/CH4/EX4.8/Ch04Exa8.sce | 17 | ||||
-rwxr-xr-x | 1970/CH4/EX4.9/Ch04Exa9.sce | 10 |
16 files changed, 224 insertions, 0 deletions
diff --git a/1970/CH4/EX4.1/Ch04Exa1.sce b/1970/CH4/EX4.1/Ch04Exa1.sce new file mode 100755 index 000000000..ec089f85c --- /dev/null +++ b/1970/CH4/EX4.1/Ch04Exa1.sce @@ -0,0 +1,11 @@ +// Scilab code Exa4.1 : : Page 178 (2011)
+clc; clear;
+N = 200e+006/35; // Total number of ion-pairs
+e = 1.60218e-019; // Charge of an ion, coulomb
+Q = N*e; // Total charge produced in the chamber, coulomb
+C = 25e-012; // Capacity of the collector, farad
+V = Q/C; // Resultant pulse height, volt
+printf("\nThe resultant pulse height recorded in the fission chamber = %4.2e volt", V);
+
+// Result
+// The resultant pulse height recorded in the fission chamber = 3.66e-002 volt
\ No newline at end of file diff --git a/1970/CH4/EX4.10/Ch04Exa10.sce b/1970/CH4/EX4.10/Ch04Exa10.sce new file mode 100755 index 000000000..187e85426 --- /dev/null +++ b/1970/CH4/EX4.10/Ch04Exa10.sce @@ -0,0 +1,11 @@ +// Scilab code Exa4.10 : : Page 180 (2011)
+clc; clear;
+E = 4e+006; // Energy lost in the scintillator, eV
+N_pe = E/10^2*0.5*0.1; // Number of photoelectrons emitted
+G = 10^6; // Gain of photomultiplier tube
+e = 1.6e-019; // Charge of the electron, C
+Q = N_pe*G*e; // Charge collected at the anode of photo multiplier tube, C
+printf("\nThe charge collected at the anode of photo multiplier tube : %6.4e C", Q);
+
+// Result
+// The charge collected at the anode of photo multiplier tube : 3.2000e-010 C
\ No newline at end of file diff --git a/1970/CH4/EX4.11/Ch04Exa11.sce b/1970/CH4/EX4.11/Ch04Exa11.sce new file mode 100755 index 000000000..f98d20cfd --- /dev/null +++ b/1970/CH4/EX4.11/Ch04Exa11.sce @@ -0,0 +1,9 @@ +// Scilab code Exa11 : : Page 180 (2011)
+E = 4e+06; // Energy lost in the scintillator, eV
+N_pe = E/10^2*0.5*0.1; // Number of photoelectrons emitted
+G = 10^6; // Gain
+e = 1.6e-019; // Charge of the electron, C
+Q = N_pe*G*e; // Charge collected at the anode of photo multiplier tube, C
+printf("\nCharge collected at the anode of photo multiplier tube : %6.4e C",Q);
+// Result
+// Charge collected at the anode of photo multiplier tube : 3.2000e-010 C
\ No newline at end of file diff --git a/1970/CH4/EX4.12/Ch04Exa12.sce b/1970/CH4/EX4.12/Ch04Exa12.sce new file mode 100755 index 000000000..9ccd33476 --- /dev/null +++ b/1970/CH4/EX4.12/Ch04Exa12.sce @@ -0,0 +1,33 @@ +// Scilab code Exa4.12 : : Page 181 (2011)
+// Defining an array
+clc; clear;
+n = cell (1,6); // Declare the cell matrix of 1X6
+n(1,1).entries = 10000;
+n(2,1).entries = 10200;
+n(3,1).entries = 10400;
+n(4,1).entries = 10600;
+n(5,1).entries = 10800;
+n(6,1).entries = 11000;
+g = 0; //
+k = 6;
+H = 0;
+for i = 1:k;
+ g = g + n(i,1).entries
+end;
+N = g/k; // Mean of the count
+D = sqrt(N);
+for i = 1:k;
+ H = H+((n(i,1).entries-N)*(n(i,1).entries-N))
+end;
+S_D = round(sqrt(H/(k-1)));
+printf("\nStandard deviation of the reading : %d", S_D);
+delta_N = sqrt(N);
+if (S_D > delta_N) then
+ printf("\nThe foil cannot be considered uniform..!");
+else
+ printf("\nThe foil can be considered uniform.");
+end
+
+// Result
+// Standard deviation of the reading : 374
+// The foil cannot be considered uniform..!
\ No newline at end of file diff --git a/1970/CH4/EX4.13/Ch04Exa13.sce b/1970/CH4/EX4.13/Ch04Exa13.sce new file mode 100755 index 000000000..a067bc48a --- /dev/null +++ b/1970/CH4/EX4.13/Ch04Exa13.sce @@ -0,0 +1,11 @@ +// Scilab code Exa4.13 : : Page 181 (2011)
+clc; clear;
+V = 2e-03; // Voltage impulse, volt
+C = 120e-012; // Capacitance of the capacitor, F
+e = 1.6e-019; // Charge of the electron, C
+n = C*V/(15*e); // No. of electons
+N = n^(1/10); // No. of electrons in the output
+printf("\nNo. of electrons in the output : %4.2f (approx)", N);
+
+// Result
+// No. of electrons in the output : 3.16 (approx)
\ No newline at end of file diff --git a/1970/CH4/EX4.14/Ch04Exa14.sce b/1970/CH4/EX4.14/Ch04Exa14.sce new file mode 100755 index 000000000..282c5eadd --- /dev/null +++ b/1970/CH4/EX4.14/Ch04Exa14.sce @@ -0,0 +1,15 @@ +// Scilab code Exa4.14 : : Page 181 (2011)
+clc; clear;
+m_p = 0.938; // Mass of the proton, GeV
+E = 1.4; // Total energy of proton, GeV
+gama = E/m_p; // Boost parameter
+bta = sqrt(1-1/gama^2); // Relativistic factor
+d = 10; // Distance between two counters,m
+C = 3e+08; // Velocity of light ,m/s
+t_p = d/(bta*C); // Time of flight of proton ,sec
+T_e = d/C; // Time of flight of electron, sec
+printf("\nTime of flight of proton: %4.2f ns \nTime of flight of electron : %4.2f ns ", t_p/1e-009, T_e/1e-009);
+
+// Result
+// Time of flight of proton: 44.90 ns
+// Time of flight of electron : 33.33 ns
\ No newline at end of file diff --git a/1970/CH4/EX4.15/Ch04Exa15.sce b/1970/CH4/EX4.15/Ch04Exa15.sce new file mode 100755 index 000000000..45286bf66 --- /dev/null +++ b/1970/CH4/EX4.15/Ch04Exa15.sce @@ -0,0 +1,14 @@ +// Scilab code Exa4.15 : : Page 182 (2011)
+clc; clear;
+p = 100; // Momentum of the particle, GeV
+n = 1+1.35e-04; // Refractive index of the gas
+m_0 = 1; // Mass, GeV per square coulomb
+gama = sqrt((p^2+m_0^2)/m_0); // Boost parameter
+bta = sqrt (1-1/gama^2); // Relativistic parameter
+d_theta = 1e-003; // Error in the emission angle, radian
+theta = acos(1/(n*bta)); // Emision angle of photon, radian
+F_err = (p^2*n^2*2*theta*10^-3)/(2*m_0^2); // Fractional error
+printf("\nThe fractional error in rest mass of the particle = %4.2f", F_err);
+
+// Result
+// The fractional error in rest mass of the particle = 0.13
\ No newline at end of file diff --git a/1970/CH4/EX4.16/Ch04Exa16.sce b/1970/CH4/EX4.16/Ch04Exa16.sce new file mode 100755 index 000000000..d483192b4 --- /dev/null +++ b/1970/CH4/EX4.16/Ch04Exa16.sce @@ -0,0 +1,15 @@ +// Scilab code Exa4.16 : : Page 182 (2011)
+clc; clear;
+u = 1.49; // Refractive index
+E = 20*1.60218e-019; // Energy of the electron, joule
+m_e = 9.1e-031; // Mass of the electron, Kg
+C = 3e-08; // Velocity of the light, m/s
+bta = (1 + {1/(E/(m_e*C^2)+1)}^2 ); // Boost parameter
+z = 1; //
+L_1 = 4000e-010; // Initial wavelength, metre
+L_2 = 7000e-010; // Final wavelength, metre
+N = 2*%pi*z^2/137*(1/L_1-1/L_2)*(1-1/(bta^2*u^2)); // Number of quanta of visible light, quanta per centimetre
+printf("\nThe total number of quantas during emission of visible light = %d quanta/cm", round(N/100));
+
+// Result
+// The total number of quantas during emission of visible light = 270 quanta/cm
\ No newline at end of file diff --git a/1970/CH4/EX4.2/Ch04Exa2.sce b/1970/CH4/EX4.2/Ch04Exa2.sce new file mode 100755 index 000000000..4e832d3ff --- /dev/null +++ b/1970/CH4/EX4.2/Ch04Exa2.sce @@ -0,0 +1,13 @@ +// Scilab code Exa4.2 : : Page 178 (2011)
+clc; clear;
+V = 0.8/4; // Pulse height, volt
+e = 1.60218e-019; // Charge of an ion, coulomb
+C = 0.5e-012; // Capacity of the collector, farad
+Q = V*C; // Total charge produced, coulomb
+N = Q/e; // Number of ion pairs
+E_1 = 35; // Energy of one ion pair, electron volt
+E = N*E_1/10^6; // Energy of the alpha particles, mega electron volt
+printf("\nThe energy of the alpha particles = %4.3f MeV", E);
+
+// Result
+// The energy of the alpha particles = 21.845 MeV (The answer is wrong in the textbook)
\ No newline at end of file diff --git a/1970/CH4/EX4.3/Ch04Exa3.sce b/1970/CH4/EX4.3/Ch04Exa3.sce new file mode 100755 index 000000000..5cca32c38 --- /dev/null +++ b/1970/CH4/EX4.3/Ch04Exa3.sce @@ -0,0 +1,18 @@ +// Scilab code Exa4.3 : : Page 178 (2011)
+clc; clear;
+E = 10e+06; // Energy produced by the ion pairs, electron volts
+N = E/35; // Number of ion pair produced
+m = 10^3; // Multiplication factor
+N_t = N*m; // Total number of ion pairs produced
+e = 1.60218e-019; // Charge of an ion, coulomb
+Q = N_t*e; // Total charge flow in the counter, coulomb
+t = 10^-3; // Pulse time, sec
+R = 10^4; // Resistance , ohm
+I = Q/t; // Current passes through the resistor, ampere
+V = I*R; // Height of the voltage pulse, volt
+ printf("\nTotal number of ion pairs produced: %5.3e \nTotal charge flow in the counter : %5.3e coulomb \nHeight of the voltage pulse : %5.3e volt", N_t, Q, V);
+
+// Result
+// Total number of ion pairs produced: 2.857e+008
+// Total charge flow in the counter : 4.578e-011 coulomb
+// Height of the voltage pulse : 4.578e-004 volt
\ No newline at end of file diff --git a/1970/CH4/EX4.4/Ch04Exa4.sce b/1970/CH4/EX4.4/Ch04Exa4.sce new file mode 100755 index 000000000..97838a9b5 --- /dev/null +++ b/1970/CH4/EX4.4/Ch04Exa4.sce @@ -0,0 +1,14 @@ +// Scilab code Exa4.4 : : Page 178 (2011)
+clc; clear;
+V = 1000; // Operating voltage of Counter, volt
+x = 1e-004; // Time taken, sec
+b = 2; // Radius of the cathode, cm
+a = 0.01; // Diameter of the wire, cm
+E_r = V/(x*log(b/a)); // Radial electric field, V/m
+C = 1e+009; // Total counts in the GM counter
+T = C/(50*60*60*2000); // Life of the G.M. Counter, year
+printf("\nThe radial electric field: %4.2eV/m\nThe life of the G.M. Counter : %5.3f years", E_r, T);
+
+// Result
+// The radial electric field: 1.89e+006V/m
+// The life of the G.M. Counter : 2.778 years
\ No newline at end of file diff --git a/1970/CH4/EX4.5/Ch04Exa5.sce b/1970/CH4/EX4.5/Ch04Exa5.sce new file mode 100755 index 000000000..29132f39e --- /dev/null +++ b/1970/CH4/EX4.5/Ch04Exa5.sce @@ -0,0 +1,11 @@ +// Scilab code Exa4.5 : : Page 178 (2011)
+clc; clear;
+I = 15.7; // Ionisation potential of argon, eV
+b = 0.025; // Radius of the cathode, metre
+a = 0.006e-02; // Radius of the wire, metre
+L = 7.8e-06; // Mean free path, metre
+V = round(I*a*log(b/a)/L); // Avalanche voltage in G.M. tube, volt
+printf("\nThe avalanche voltage in G.M. tube = %d volt", V);
+
+// Result
+// The avalanche voltage in G.M. tube = 729 volt
\ No newline at end of file diff --git a/1970/CH4/EX4.6/Ch04Exa6.sce b/1970/CH4/EX4.6/Ch04Exa6.sce new file mode 100755 index 000000000..12f7fdd14 --- /dev/null +++ b/1970/CH4/EX4.6/Ch04Exa6.sce @@ -0,0 +1,9 @@ +// Scilab code Exa4.6 : : Page 179 (2011)
+clc; clear;
+C_r = 0.1e-02; // Counting rate of GM tube
+S = 3; // Slope of the curve
+V = C_r*100*100/S; // Voltage fluctuation, volt
+printf("\nThe voltage fluctuation GM tube = %4.2f volt", V);
+
+// Result
+// The voltage fluctuation GM tube = 3.33 volt
\ No newline at end of file diff --git a/1970/CH4/EX4.7/Ch04Exa7.sce b/1970/CH4/EX4.7/Ch04Exa7.sce new file mode 100755 index 000000000..8b442d6b5 --- /dev/null +++ b/1970/CH4/EX4.7/Ch04Exa7.sce @@ -0,0 +1,13 @@ +// Scilab code Exa4.7 : : Page-179 (2011)
+clc; clear;
+R_t = 100; // Actual count rate, per sec
+R_B = 25; // Backward count rate, per sec
+V_S = 0.03; // Coefficient of variation
+R_S = R_t-R_B; // Source counting rate,per sec
+T_t = (R_t+sqrt(R_t*R_B))/(V_S^2*R_S^2); // Time measurement for actual count, sec
+T_B = T_t*sqrt(R_B/R_t); // Time measurement for backward count, sec
+printf("\nTime measurement for actual count : %5.3f sec \nTime measurement for backward count : %4.1f sec", T_t, T_B);
+
+// Result
+// Time measurement for actual count : 29.630 sec
+// Time measurement for backward count : 14.8 sec
\ No newline at end of file diff --git a/1970/CH4/EX4.8/Ch04Exa8.sce b/1970/CH4/EX4.8/Ch04Exa8.sce new file mode 100755 index 000000000..cc2e31398 --- /dev/null +++ b/1970/CH4/EX4.8/Ch04Exa8.sce @@ -0,0 +1,17 @@ +// Scilab code Exa4.8 : : Page-179 (2011)
+clc; clear;
+A = 1.5e-4; // Area of capacitor plates, square metre
+K = 12; // Dielectric constant
+D = K*8.8542e-012; // Electrical permittivity of the medium, per newton-metre-square coulomb square
+x = 50e-06; // Width of depletion layer, metre
+C = A*D/x*10^12; // Capacitance of the silicon detector, pF
+E = 4.5e+06; // Energy produced by the ion pairs, eV
+N = E/3.5; // Number of ion pairs
+e = 1.60218e-019; // Charge of each ion, coulomb
+Q = N*e; // Total charge, coulomb
+V = Q/C*10^12; // Potential applied across the capacitor, volt
+printf("\nThe capacitance of the detector : %6.2f pF\nThe potential applied across the capacitor : %4.2e volt", C, V);
+
+// Result
+// The capacitance of the detector : 318.75 pF
+// The potential applied across the capacitor : 6.46e-004 volt
diff --git a/1970/CH4/EX4.9/Ch04Exa9.sce b/1970/CH4/EX4.9/Ch04Exa9.sce new file mode 100755 index 000000000..e380e02ff --- /dev/null +++ b/1970/CH4/EX4.9/Ch04Exa9.sce @@ -0,0 +1,10 @@ +// Scilab code Exa4.9 : : Page-180 (2011)
+clc; clear;
+N_A = 1000; // Number of count observed for radiation A
+N_B = 2000; // Number of count observed for radiation B
+r = N_A/N_B; // Ratio of count A to the count B
+E_r = sqrt(1/N_A+1/N_B); // Statistical error
+printf("\nThe statistical error of the measured ratio = %4.2f", E_r*r);
+
+// Result
+// The statistical error of the measured ratio = 0.02 (Wrong answer in the textbook)
\ No newline at end of file |