diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1964/CH4/EX4.25/ex4_25.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1964/CH4/EX4.25/ex4_25.sce')
-rwxr-xr-x | 1964/CH4/EX4.25/ex4_25.sce | 62 |
1 files changed, 62 insertions, 0 deletions
diff --git a/1964/CH4/EX4.25/ex4_25.sce b/1964/CH4/EX4.25/ex4_25.sce new file mode 100755 index 000000000..a4335968e --- /dev/null +++ b/1964/CH4/EX4.25/ex4_25.sce @@ -0,0 +1,62 @@ +//Chapter-4, Example 4.25, Page 149
+//=============================================================================
+clc
+clear
+funcprot(0)
+function [polar] = r2p(x,y) //function to convert rectangular to polar
+ polar = ones(1,2)
+ polar(1) = sqrt ((x ^2) +(y^2))
+ polar(2) = atan (y/x)
+ polar(2) =(polar (2)*180)/%pi
+ endfunction
+ function [ rect ] = p2r(r,theta)//function to convert polar to rectangular
+ rect = ones(1 ,2)
+ theta =( theta *%pi) /180
+ rect (1)=r* cos(theta)
+ rect (2)=r* sin(theta)
+ endfunction
+//CALCULATIONS
+//v=230*sin(314*t)+60*sin(942*t)
+V=230;//voltage in volts
+V1=60;//voltage of harmonic in volts
+R=10;//resistance in ohms
+L=0.3;//inductance in henry
+C=100*10^-6;//capacitance in F
+//Branch with Resistor (R)
+I1m=V/R;//current in A
+I1m=I1m/(sqrt(2));//rms current in A
+I3m=V1/R;//current in A
+I3m=I3m/(sqrt(2));//rms current in A
+I=sqrt((I1m)^2+(I3m)^2);//rms current in A
+Pr=((I)^2)*(R);//power in Watts
+//Branch with inductor(L)
+Z1=(10+((%i)*(314*0.03)));//impedance to fundamental component
+M=sqrt((10)^2+(9.42)^2);//magnitude of Z1 in polar form
+theta=atan(9.42/10)*(180/%pi);//angle of Z1 in polar form
+I2m=V/M;//fundamental current in A
+I2m=I2m/(sqrt(2));//rms current in A
+I4m=V1/M;//third harmonic component of current
+I4m=I4m/(sqrt(2));//rms current in A
+I1=((I2m)^2+(I4m)^2);//total rms current in A
+Pr1=(I1)*(R);//Power in Watts
+//branch with capacitor
+X1=1/(314*10^-4);//reactance to fundamental component in ohms
+I5m=V/(X1);//current in A
+I5m=I5m/(sqrt(2));//rms current in A
+X2=1/(942*10^-4);//reactance to third harmonic component in ohms
+I6m=V1/X2;//current in A
+I6m=I6m/(sqrt(2));//rms current in A
+I2=sqrt((I5m)^2+(I6m)^2);//total rms current in A
+Pr2=0;//power in watts
+T=Pr+Pr1+Pr2;//total power dissipated in W
+//calculation of total current
+Im=(p2r(16.26,0)+p2r(11.84,43.29)+p2r(5.1,90));//pol to rect
+disp(Im);//fundamental component of current in A
+Im1=(p2r(4.24,0)+p2r(3.09,-43.29)+p2r(4,90));//pol to rect
+disp(Im1);//third harmonic component of current in A
+T1=sqrt((Im(1))^2+(Im1(1))^2);//total rms current in A
+V2=(sqrt((V)^2+(V1)^2))/sqrt(2);//voltage applied in rms
+pf=T/((T1)*(V2));//power factor
+mprintf("thus total current ,power input and power factor are %2.2f A ,%f W,%1.2f respectively",T1,T,pf);
+//=================================END OF PROGRAM======================================================================================================
+
|