diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1910/CH7/EX7.5/CHapter75.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1910/CH7/EX7.5/CHapter75.sce')
-rwxr-xr-x | 1910/CH7/EX7.5/CHapter75.sce | 56 |
1 files changed, 56 insertions, 0 deletions
diff --git a/1910/CH7/EX7.5/CHapter75.sce b/1910/CH7/EX7.5/CHapter75.sce new file mode 100755 index 000000000..879b21717 --- /dev/null +++ b/1910/CH7/EX7.5/CHapter75.sce @@ -0,0 +1,56 @@ +// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Introduction to heat transfer by S.K.Som, Chapter 7, Example 5")
+//A flat plate of width B=1m is maintained at a uniform surface temprtaure(Tw)=225°C
+Tw=225;
+B=1;
+//Heating is done by rectangular modules of thickness t=10mm and length l=40mm.
+t=10;
+l=40;
+//atmospheric air at temprature,Tinf=25°C flows over the plate at velocity(Uinf)=30m/s.
+Tinf=25;
+Uinf=30;
+//The thermophysical properties of module are conductivity(km=5.2W/(m*K)),specific heat(cp=320J/(kg/K)),density(rho=2300kg/m^3).
+km=5.2;
+cp=320;
+rho=2300;
+//Assume the air properties at the film temprature of 125°C conductivity(ka=0.031W/(m*K)),kinematic viscosity(nu=22*10^-6m^2/s),Prandtl number(Pr=0.7)
+ka=0.031;
+nu=22*10^-6;
+Pr=0.7;
+//Module is placed at a distance of 800mm from the leading edge
+//The distance from leading edge to the centre-line of the module,L=800+20=820mm.
+L=0.82;//in metre
+//ReL is the reynolds number
+disp("Reynolds number is")
+ReL=(Uinf*L)/nu
+disp("Therefore the flow is turbulent over the module ")
+//The local heat transfer coefficient at L is calculated using hL=(k/L)*0.0296*(ReL)^(4/5)*(Pr)^(1/3)
+disp("The local heat transfer coefficient at L in W/(m^2*K)is")
+hL=(ka/L)*0.0296*(ReL)^(4/5)*(Pr)^(1/3)
+//We consider that the local heat transfer coefficient at L=0.82m remains the same over the module which extends from L=0.80m to 0.84m
+//If qm be the power generation in W/m^2 within the module ,we can write from energy balance qm*(t/1000)*(l/1000)*(B)=hbarL*(t/1000)*(B)*(Tw-Tinf)
+disp("The required power generation in W/m^3 is")
+qm=(hL*(l/1000)*(B)*(Tw-Tinf))/((t/1000)*(l/1000)*(B))
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
|