From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1910/CH7/EX7.5/CHapter75.sce | 56 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 56 insertions(+) create mode 100755 1910/CH7/EX7.5/CHapter75.sce (limited to '1910/CH7/EX7.5/CHapter75.sce') diff --git a/1910/CH7/EX7.5/CHapter75.sce b/1910/CH7/EX7.5/CHapter75.sce new file mode 100755 index 000000000..879b21717 --- /dev/null +++ b/1910/CH7/EX7.5/CHapter75.sce @@ -0,0 +1,56 @@ +// Display mode +mode(0); +// Display warning for floating point exception +ieee(1); +clear; +clc; +disp("Introduction to heat transfer by S.K.Som, Chapter 7, Example 5") +//A flat plate of width B=1m is maintained at a uniform surface temprtaure(Tw)=225°C +Tw=225; +B=1; +//Heating is done by rectangular modules of thickness t=10mm and length l=40mm. +t=10; +l=40; +//atmospheric air at temprature,Tinf=25°C flows over the plate at velocity(Uinf)=30m/s. +Tinf=25; +Uinf=30; +//The thermophysical properties of module are conductivity(km=5.2W/(m*K)),specific heat(cp=320J/(kg/K)),density(rho=2300kg/m^3). +km=5.2; +cp=320; +rho=2300; +//Assume the air properties at the film temprature of 125°C conductivity(ka=0.031W/(m*K)),kinematic viscosity(nu=22*10^-6m^2/s),Prandtl number(Pr=0.7) +ka=0.031; +nu=22*10^-6; +Pr=0.7; +//Module is placed at a distance of 800mm from the leading edge +//The distance from leading edge to the centre-line of the module,L=800+20=820mm. +L=0.82;//in metre +//ReL is the reynolds number +disp("Reynolds number is") +ReL=(Uinf*L)/nu +disp("Therefore the flow is turbulent over the module ") +//The local heat transfer coefficient at L is calculated using hL=(k/L)*0.0296*(ReL)^(4/5)*(Pr)^(1/3) +disp("The local heat transfer coefficient at L in W/(m^2*K)is") +hL=(ka/L)*0.0296*(ReL)^(4/5)*(Pr)^(1/3) +//We consider that the local heat transfer coefficient at L=0.82m remains the same over the module which extends from L=0.80m to 0.84m +//If qm be the power generation in W/m^2 within the module ,we can write from energy balance qm*(t/1000)*(l/1000)*(B)=hbarL*(t/1000)*(B)*(Tw-Tinf) +disp("The required power generation in W/m^3 is") +qm=(hL*(l/1000)*(B)*(Tw-Tinf))/((t/1000)*(l/1000)*(B)) + + + + + + + + + + + + + + + + + + -- cgit