diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1871/CH12 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1871/CH12')
-rwxr-xr-x | 1871/CH12/EX12.1/Ch12Ex1.sce | 22 | ||||
-rwxr-xr-x | 1871/CH12/EX12.2/Ch12Ex2.sce | 15 | ||||
-rwxr-xr-x | 1871/CH12/EX12.3/Ch12Ex3.sce | 11 | ||||
-rwxr-xr-x | 1871/CH12/EX12.4/Ch12Ex4.sce | 16 | ||||
-rwxr-xr-x | 1871/CH12/EX12.5/Ch12Ex5.sce | 26 | ||||
-rwxr-xr-x | 1871/CH12/EX12.6/Ch12Ex6.sce | 11 | ||||
-rwxr-xr-x | 1871/CH12/EX12.7/Ch12Ex7.sce | 10 | ||||
-rwxr-xr-x | 1871/CH12/EX12.8/Ch12Ex8.sce | 19 | ||||
-rwxr-xr-x | 1871/CH12/EX12.9/Ch12Ex9.sce | 12 |
9 files changed, 142 insertions, 0 deletions
diff --git a/1871/CH12/EX12.1/Ch12Ex1.sce b/1871/CH12/EX12.1/Ch12Ex1.sce new file mode 100755 index 000000000..d865ccc67 --- /dev/null +++ b/1871/CH12/EX12.1/Ch12Ex1.sce @@ -0,0 +1,22 @@ +// Scilab code Ex12.1: Pg:463 (2008)
+clc;clear;
+n1 = 1.5; // Core index of an optical fibre
+n0 = 1; // Refractive index of air
+delta = 0.0005; // Intermodal dispersion factor for the fibre
+// Since delta = (n1-n2)/n1, solving for n2
+n2 = n1 - n1*delta; // Refractive index of cladding
+//As sind(phi_c) = n2/n1, solving for phi_c, we have
+phi_c = asind(n2/n1); // Critical internal reflection angle, degree
+// As sind(theta_0) = sqrt(n1^2-n2^2)/n0, solving for theta_0
+theta_0 = asind(sqrt(n1^2-n2^2)/n0); // External critical acceptance angle, degree
+NA = n1*sqrt(2*delta); // Numerical aperture
+printf("\nThe refractive index of cladding = %7.5f ", n2);
+printf("\nThe critical internal reflection angle = %4.1f degree", phi_c);
+printf("\nThe external critical acceptance angle = %4.2f degree", theta_0);
+printf("\nThe numerical aperture = %6.4f ", NA);
+
+// Result
+// The refractive index of cladding = 1.49925
+// The critical internal reflection angle = 88.2 degree
+// The external critical acceptance angle = 2.72 degree
+// The numerical aperture = 0.0474
\ No newline at end of file diff --git a/1871/CH12/EX12.2/Ch12Ex2.sce b/1871/CH12/EX12.2/Ch12Ex2.sce new file mode 100755 index 000000000..6773b6f57 --- /dev/null +++ b/1871/CH12/EX12.2/Ch12Ex2.sce @@ -0,0 +1,15 @@ +// Scilab code Ex12.2: Pg:464 (2008)
+clc;clear;
+n2 = 1.59; // Cladding refractive index of an optical fibre
+n0 = 1; // Refractive index when the fiber is in air
+NA = 0.20; // Numerical aperture of fiber
+// Since NA = sqrt(n_1^2-n_2^2)/n0, solving for n1
+n1 = sqrt(NA^2 + n2^2)/n0; // Core refractive index of fiber
+// In water, n0 = 1.33
+n0 = 1.33; // Refractive index of water
+NA = sqrt(n1^2-n2^2)/n0; // Numerical aperture when the fiber is in water
+theta_max = asind(NA); // Acceptance angle for the fiber in water, degree
+printf("\nThe acceptance angle for the fibre = %3.1f degree", theta_max);
+
+// Result
+// The acceptance angle for the fibre = 8.6 degree
\ No newline at end of file diff --git a/1871/CH12/EX12.3/Ch12Ex3.sce b/1871/CH12/EX12.3/Ch12Ex3.sce new file mode 100755 index 000000000..433a8395e --- /dev/null +++ b/1871/CH12/EX12.3/Ch12Ex3.sce @@ -0,0 +1,11 @@ +// Scilab code Ex12.3: Pg:467 (2008)
+clc;clear;
+n1 = 1.45; // Core refractive index of an fibre
+d = 0.6; // Core diameter of fiber, m
+NA = 0.16; // Numerical aperture of fiber
+lambda_0 = 9e-007; // Wavelength of light, m
+V = %pi*d*NA/lambda_0; // Normalized frequency (V-number)for the fiber
+printf("\nThe normalized frequency for fiber = %4.2e ", V);
+
+// Result
+// The normalized frequency for fiber = 3.35e+005
\ No newline at end of file diff --git a/1871/CH12/EX12.4/Ch12Ex4.sce b/1871/CH12/EX12.4/Ch12Ex4.sce new file mode 100755 index 000000000..1a16ee5ff --- /dev/null +++ b/1871/CH12/EX12.4/Ch12Ex4.sce @@ -0,0 +1,16 @@ +// Scilab code Ex12.4: Pg:468 (2008)
+clc;clear;
+n1 = 1.52; // Core refractive index of an fibre
+d = 29e-06; // Core diameter of fiber, m
+delta = 0.0007; // Fractional difference index
+lambda_0 = 1.3e-06; // Wavelength of light, m
+// Since delta = (n1-n2)/n1, solving for n2
+n2 = n1-n1*delta; // Cladding refractive index of fiber
+V = %pi*d*sqrt(n1^2 - n2^2)/lambda_0; // Normalized frequency for the fiber
+N = 1/2*V^2; // Number of modes the fiber will support
+printf("\nThe normalized frequency for fiber = %5.3f ", V);
+printf("\nThe number of modes supported by the fiber = %1.0f ", N);
+
+// Result
+// The normalized frequency for fiber = 3.985
+// The number of modes supported by the fiber = 8
\ No newline at end of file diff --git a/1871/CH12/EX12.5/Ch12Ex5.sce b/1871/CH12/EX12.5/Ch12Ex5.sce new file mode 100755 index 000000000..8245a974a --- /dev/null +++ b/1871/CH12/EX12.5/Ch12Ex5.sce @@ -0,0 +1,26 @@ +// Scilab code Ex12.5: Pg:468 (2008)
+clc;clear;
+// Define function to convert degrees to degree, minute and second
+function [deg, minute, second] = deg2dms(theta)
+ deg = floor(theta);
+ minute = floor((theta-deg)*60);
+ second = floor(((theta-deg)*60-minute)*60);
+endfunction
+n1 = 1.480; // Core refractive index of an optical fibre
+n2 = 1.47; // Cladding refractive index of an optical fibre
+lambda_0 = 850e-09; // wavelength of light, m
+V = 2.405; // Normalized frequency for single mode propagation of the fibre
+// As V = %pi*d*sqrt(n1^2-n2^2)/lambda_0, solving for d
+d = V*lambda_0/(%pi*sqrt(n1^2-n2^2)*1e-006); // Core radius, micro-metre
+NA = sqrt(n1^2-n2^2); // Numerical aperture of the fiber
+// Since sind(theta_0) = NA, solving for theta_0
+theta_0 = asind(NA); // The maximum acceptance angle of fiber, degree
+[deg, m, s] = deg2dms(theta_0); // Call conversion function
+printf("\nThe core radius of the fiber = %4.2f micro-meter", d);
+printf("\nThe numerical aperture of fiber = %6.4f ", NA);
+printf("\nThe maximum acceptance angle = %d deg %d min %d sec", deg, m, s);
+
+// Result
+// The core radius of the fiber = 3.79 micro-meter
+// The numerical aperture of fiber = 0.1718
+// The maximum acceptance angle = 9 deg 53 min 23 sec
\ No newline at end of file diff --git a/1871/CH12/EX12.6/Ch12Ex6.sce b/1871/CH12/EX12.6/Ch12Ex6.sce new file mode 100755 index 000000000..cd146a53f --- /dev/null +++ b/1871/CH12/EX12.6/Ch12Ex6.sce @@ -0,0 +1,11 @@ +// Scilab code Ex12.6: Pg:473 (2008) +clc;clear; +alpha = 3.5; // Attenuation of optical signal, dB/km +Pi = 0.5e-003; // Initial Power level of optical fibre, mW +L = 4; // Lenght of optical fibre, km +// As alpha = (10/L)*log(Pi/Po), solving for Po +Po = Pi/10^(alpha*L/10); // Output power level of optical fibre, micro-W +printf("\nThe output power level in optical fiber = %4.1f micro-W", Po/1e-006); + +// Result +// The output power level in optical fiber = 19.9 micro-W
\ No newline at end of file diff --git a/1871/CH12/EX12.7/Ch12Ex7.sce b/1871/CH12/EX12.7/Ch12Ex7.sce new file mode 100755 index 000000000..82e17513b --- /dev/null +++ b/1871/CH12/EX12.7/Ch12Ex7.sce @@ -0,0 +1,10 @@ +// Scilab code Ex12.7: Pg:473 (2008)
+clc;clear;
+Pi = 1; // Initial Power level of optical fibre, mW
+Po = 0.85; // Output Power level of optical fibre, mW
+L = 0.5; // Lenght of optical fibre, km
+alpha = (10/L)*log10(Pi/Po); // Attenuation of optical signal, dB/km
+printf("\nThe attenuation of optical signal = %4.2f dB/km", alpha);
+
+// Result
+// The attenuation of optical signal = 1.41 dB/km
\ No newline at end of file diff --git a/1871/CH12/EX12.8/Ch12Ex8.sce b/1871/CH12/EX12.8/Ch12Ex8.sce new file mode 100755 index 000000000..905923ab3 --- /dev/null +++ b/1871/CH12/EX12.8/Ch12Ex8.sce @@ -0,0 +1,19 @@ +// Scilab code Ex12.8: Pg:477 (2008)
+clc;clear;
+c = 3e+008; // Speed of light, m/s
+n1 = 1.5; // Core index of an optical fibre
+n2 = 1.498; // Cladding index of an optical fibre
+l = 18; // Length of an optical fibre, km
+D = (n1-n2)/n1; // Intermodal dispersion factor for the fibre
+// For a 1 km length fibre
+delta = n1*1000/c*D/(1-D)*1e+009; // intermodal dispersion factor for 1 km length fibre, ns/km
+delta_t_total = delta*l; // Total dispersion in 18 km length, ns
+B_max = 1/(5*delta_t_total*1e-009); // Maximum bit rate, bits/sec
+printf("\nThe intermodal dispersion factor for 1 km length fibre = %4.2f ns/km", delta );
+printf("\nThe total dispersion in 18 km length fibre = %5.1f ns", delta_t_total);
+printf("\nThe maximum bit rate allowed asuuming dispersion limiting = %4.2f M bits/s",B_max/1e+006);
+
+// Result
+// The intermodal dispersion factor for 1 km length fibre = 6.68 ns/km
+// The total dispersion in 18 km length fibre = 120.2 ns
+// The maximum bit rate allowed asuuming dispersion limiting = 1.66 M bits/s
\ No newline at end of file diff --git a/1871/CH12/EX12.9/Ch12Ex9.sce b/1871/CH12/EX12.9/Ch12Ex9.sce new file mode 100755 index 000000000..21dc38963 --- /dev/null +++ b/1871/CH12/EX12.9/Ch12Ex9.sce @@ -0,0 +1,12 @@ +// Scilab code Ex12.9:Pg:478 (2008)
+clc;clear;
+P2 = 0.3e-006; // Optical power level at the detector, W
+dB_1 = 0.8*15; // Connector loss, dB
+dB_2 = 1.5*15; // Fibre loss, dB
+dB = dB_1 + dB_2; // Total Loss, dB
+// As dB = 10*log10(P1/P2), solving for P1
+P1 = P2*10^(dB/10)/1e-003; // Initial power level of an optical fibre, mw
+printf("\nThe initial power level of an optical fibre = %4.2f mW",P1 );
+
+// Result
+// The initial power level of an optical fibre = 0.85 mW
\ No newline at end of file |