diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1835/CH2 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1835/CH2')
-rwxr-xr-x | 1835/CH2/EX2.1/Ex2_1.sce | 21 | ||||
-rwxr-xr-x | 1835/CH2/EX2.10/Ex2_10.sce | 39 | ||||
-rwxr-xr-x | 1835/CH2/EX2.11/Ex2_11.sce | 37 | ||||
-rwxr-xr-x | 1835/CH2/EX2.12/Ex2_12.sce | 39 | ||||
-rwxr-xr-x | 1835/CH2/EX2.13/Ex2_13.sce | 39 | ||||
-rwxr-xr-x | 1835/CH2/EX2.14/Ex2_14.sce | 31 | ||||
-rwxr-xr-x | 1835/CH2/EX2.2/Ex2_2.sce | 20 | ||||
-rwxr-xr-x | 1835/CH2/EX2.3/Ex2_3.sce | 18 | ||||
-rwxr-xr-x | 1835/CH2/EX2.4/Ex2_4.sce | 28 | ||||
-rwxr-xr-x | 1835/CH2/EX2.5/Ex2_5.sce | 44 | ||||
-rwxr-xr-x | 1835/CH2/EX2.6/Ex2_6.sce | 29 | ||||
-rwxr-xr-x | 1835/CH2/EX2.7/Ex2_7.sce | 25 | ||||
-rwxr-xr-x | 1835/CH2/EX2.8/Ex2_8.sce | 31 | ||||
-rwxr-xr-x | 1835/CH2/EX2.9/Ex2_9.sce | 31 |
14 files changed, 432 insertions, 0 deletions
diff --git a/1835/CH2/EX2.1/Ex2_1.sce b/1835/CH2/EX2.1/Ex2_1.sce new file mode 100755 index 000000000..ae008ae25 --- /dev/null +++ b/1835/CH2/EX2.1/Ex2_1.sce @@ -0,0 +1,21 @@ +//CHAPTER 2 ILLUSRTATION 1 PAGE NO 57
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+Na=300;//driving shaft running speed in rpm
+Nb=400;//driven shaft running speed in rpm
+Da=60;//diameter of driving shaft in mm
+t=.8;//belt thickness in mm
+s=.05;//slip in percentage(5%)
+//==========================================================================================
+//calculation
+Db=(Da*Na)/Nb;//finding out the diameter of driven shaft without considering the thickness of belt
+Db1=(((Da+t)*Na)/Nb)-t///considering the thickness
+Db2=(1-s)*(Da+t)*(Na/Nb)-t//considering slip also
+//=========================================================================================
+//output
+printf('the value of Db is %3.0f cm',Db)
+printf('\nthe value of Db1 is %f cm',Db1)
+printf('\nthe value of Db2 is %f cm',Db2)
diff --git a/1835/CH2/EX2.10/Ex2_10.sce b/1835/CH2/EX2.10/Ex2_10.sce new file mode 100755 index 000000000..d4a0f1f29 --- /dev/null +++ b/1835/CH2/EX2.10/Ex2_10.sce @@ -0,0 +1,39 @@ +//CHAPTER 2,ILLUSTRATION 10 PAGE 64
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//INPUT
+t=5//THICKNESS OF BELT IN m
+PI=3.141
+U=.3
+e=2.71
+THETA=155*PI/180//ANGLE OF CONTACT IN radians
+V=30//VELOCITY IN m/s
+density=1//in m/cm^3
+L=1//LENGTH
+
+//calculation
+Xb=80// (T1-T2)=80b;so let (T1-T2)/b=Xb
+Y=e^(U*THETA)// LET Y=T1/T2
+Zb=80*Y/(Y-1)// LET T1/b=Zb;BY SOLVING THE ABOVE 2 EQUATIONS WE WILL GET THIS EXPRESSION
+Mb=t*L*density*10^-2// m/b in N
+Tcb=Mb*V^2// centrifugal tension/b
+Tmaxb=Zb+Tcb// MAX TENSION/b
+Fb=Tmaxb/t//STRESS INDUCED IN TIGHT BELT
+
+//OUTPUT
+printf('THE STRESS DEVELOPED ON THE TIGHT SIDE OF BELT=%f N/cm^2',Fb)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/1835/CH2/EX2.11/Ex2_11.sce b/1835/CH2/EX2.11/Ex2_11.sce new file mode 100755 index 000000000..0dfdb0e6b --- /dev/null +++ b/1835/CH2/EX2.11/Ex2_11.sce @@ -0,0 +1,37 @@ +//CHAPTER 2,ILLUSTRATION 11 PAGE 65
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//INPUT
+C=4.5// CENTRE DISTANCE IN metres
+D1=1.35// DIAMETER OF LARGER PULLEY IN metres
+D2=.9// DIAMETER OF SMALLER PULLEY IN metres
+To=2100// INITIAL TENSION IN newtons
+b=12// WIDTH OF BELT IN cm
+t=12// THICKNESS OF BELT IN mm
+d=1// DENSITY IN gm/cm^3
+U=.3// COEFFICIENT OF FRICTION
+L=1// length in metres
+PI=3.141
+e=2.71
+
+//CALCULATION
+M=b*t*d*L*10^-2// mass of belt per metre length in KG
+V=(To/3/M)^.5// VELOCITY OF FOR MAX POWER TO BE TRANSMITTED IN m/s
+Tc=M*V^2// CENTRIFUGAL TENSION IN newtons
+// LET (T1+T2)=X
+X=2*To-2*Tc // THE VALUE OF (T1+T2)
+F=(D1-D2)/(2*C)
+ALPHA=asind(F)
+THETA=(180-(2*ALPHA))*PI/180// ANGLE OF CONTACT IN radians
+// LET T1/T2=Y
+Y=e^(U*THETA)// THE VALUE OF T1/T2
+T1=X*Y/(Y+1)// BY SOLVING X AND Y WE WILL GET THIS EQN
+T2=X-T1
+P=(T1-T2)*V/1000// MAX POWER TRANSMITTED IN kilowatts
+N1=V*60/(PI*D1)// SPEED OF LARGER PULLEY IN rpm
+N2=V*60/(PI*D2)// SPEED OF SMALLER PULLEY IN rpm
+//OUTPUT
+printf('\n MAX POWER TO BE TRANSMITTED =%f KW',P)
+printf('\n SPEED OF THE LARGER PULLEY =%f rpm',N1)
+printf('\n SPEED OF THE SMALLER PULLEY =%f rpm',N2)
diff --git a/1835/CH2/EX2.12/Ex2_12.sce b/1835/CH2/EX2.12/Ex2_12.sce new file mode 100755 index 000000000..7ffba0a6e --- /dev/null +++ b/1835/CH2/EX2.12/Ex2_12.sce @@ -0,0 +1,39 @@ +//CHAPTER 2,ILLUSTRATION 12 PAGE 66
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//============================================================================================================================
+//INPUT
+PI=3.141
+e=2.71
+D1=1.20// DIAMETER OF DRIVING SHAFT IN m
+D2=.50// DIAMETER OF DRIVEN SHAFT IN m
+C=4// CENTRE DISTANCE BETWEEN THE SHAFTS IN m
+M=.9// MASS OF BELT PER METRE LENGTH IN kg
+Tmax=2000// MAX TENSION IN N
+U=.3// COEFFICIENT OF FRICTION
+N1=200// SPEED OF DRIVING SHAFT IN rpm
+N2=450// SPEED OF DRIVEN SHAFT IN rpm
+//==============================================================================================================================
+//CALCULATION
+V=PI*D1*N1/60// VELOCITY OF BELT IN m/s
+Tc=M*V^2// CENTRIFUGAL TENSION IN N
+T1=Tmax-Tc// TENSION ON TIGHTSIDE IN N
+F=(D1-D2)/(2*C)
+ALPHA=asind(F)
+THETA=(180-(2*ALPHA))*PI/180// ANGLE OF CONTACT IN radians
+T2=T1/(e^(U*THETA))// TENSION ON SLACK SIDE IN N
+TL=(T1-T2)*D1/2// TORQUE ON THE SHAFT OF LARGER PULLEY IN N-m
+TS=(T1-T2)*D2/2// TORQUE ON THE SHAFT OF SMALLER PULLEY IN N-m
+P=(T1-T2)*V/1000// POWER TRANSMITTED IN kW
+Pi=2*PI*N1*TL/60000// INPUT POWER
+Po=2*PI*N2*TS/60000// OUTPUT POWER
+Pl=Pi-Po// POWER LOST DUE TO FRICTION IN kW
+n=Po/Pi*100// EFFICIENCY OF DRIVE IN %
+//==================================================================================================================================
+//OUTPUT
+printf('\nTORQUE ON LARGER SHAFT =%f N-m',TL)
+printf('\nTORQUE ON SMALLER SHAFT =%f N-m',TS)
+printf('\nPOWER TRANSMITTED =%f kW',P)
+printf('\nPOWER LOST DUE TO FRICTION =%f kW',Pl)
+printf('\nEFFICIENCY OF DRINE =%f percentage',n)
diff --git a/1835/CH2/EX2.13/Ex2_13.sce b/1835/CH2/EX2.13/Ex2_13.sce new file mode 100755 index 000000000..78922be5e --- /dev/null +++ b/1835/CH2/EX2.13/Ex2_13.sce @@ -0,0 +1,39 @@ +//CHAPTER 2,ILLUSTRATION 13 PAGE 67
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//============================================================================================================================
+//INPUT
+PI=3.141
+e=2.71
+P=90// POWER OF A COMPRESSOR IN kW
+N2=250// SPEED OF DRIVEN SHAFT IN rpm
+N1=750// SPEED OF DRIVER SHAFT IN rpm
+D2=1// DIAMETER OF DRIVEN SHAFT IN m
+C=1.75// CENTRE DISTANCE IN m
+V=1600/60// VELOCITY IN m/s
+a=375// CROSECTIONAL AREA IN mm^2
+density=1000// BELT DENSITY IN kg/m^3
+L=1// length to be considered
+Fb=2.5// STRESSS INDUCED IN MPa
+beeta=35/2// THE GROOVE ANGLE OF PULLEY
+U=.25// COEFFICIENT OF FRICTION
+//=================================================================================================================================
+//CALCULATION
+D1=N2*D2/N1// DIAMETER OF DRIVING SHAFT IN m
+m=a*density*10^-6*L// MASS OF THE BELT IN kg
+Tmax=a*Fb// MAX TENSION IN N
+Tc=m*V^2// CENTRIFUGAL TENSION IN N
+T1=Tmax-Tc// TENSION ON TIGHTSIDE OF BELT IN N
+F=(D2-D1)/(2*C)
+ALPHA=asind(F)
+THETA=(180-(2*ALPHA))*PI/180// ANGLE OF CONTACT IN radians
+T2=T1/(e^(U*THETA/sind(beeta)))//TENSION ON SLACKSIDE IN N
+P2=(T1-T2)*V/1000// POWER TRANSMITTED PER BELT kW
+N=P/P2// NO OF V-BELTS
+N3=N+1
+//======================================================================================================================================
+//OUTPUT
+printf('NO OF BELTS REQUIRED TO TRANSMIT POWER=%f APPROXIMATELY=%d\n',N,N3)
+
+
diff --git a/1835/CH2/EX2.14/Ex2_14.sce b/1835/CH2/EX2.14/Ex2_14.sce new file mode 100755 index 000000000..0e0b98dd1 --- /dev/null +++ b/1835/CH2/EX2.14/Ex2_14.sce @@ -0,0 +1,31 @@ +//CHAPTER 2,ILLUSTRATION 14 PAGE 68
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+
+clc
+clear
+//============================================================================================================================
+//INPUT
+PI=3.141
+e=2.71
+P=75// POWER IN kW
+D=1.5// DIAMETER OF PULLEY IN m
+U=.3// COEFFICIENT OF FRICTION
+beeta=45/2// GROOVE ANGLE
+THETA=160*PI/180// ANGLE OF CONTACT IN radians
+m=.6// MASS OF BELT IN kg/m
+Tmax=800// MAX TENSION IN N
+N=200// SPEED OF SHAFT IN rpm
+//=============================================================================================================================
+//calculation
+V=PI*D*N/60// VELOCITY OF ROPE IN m/s
+Tc=m*V^2// CENTRIFUGAL TENSION IN N
+T1=Tmax-Tc// TENSION ON TIGHT SIDE IN N
+T2=T1/(e^(U*THETA/sind(beeta)))//TENSION ON SLACKSIDE IN N
+P2=(T1-T2)*V/1000// POWER TRANSMITTED PER BELT kW
+No=P/P2// NO OF V-BELTS
+N3=No+1// ROUNDING OFF
+To=(T1+T2+Tc*2)/2// INITIAL TENSION
+//================================================================================================================================
+//OUTPUT
+printf('NO OF BELTS REQUIRED TO TRANSMIT POWER=%f APPROXIMATELY=%d\n',No,N3)
+printf('INITIAL ROPE TENSION=%f N',To)
diff --git a/1835/CH2/EX2.2/Ex2_2.sce b/1835/CH2/EX2.2/Ex2_2.sce new file mode 100755 index 000000000..ffaf942a5 --- /dev/null +++ b/1835/CH2/EX2.2/Ex2_2.sce @@ -0,0 +1,20 @@ +//CHAPTER 2,ILLUSRTATION 2 PAGE NO 57
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//====================================================================================
+//input
+n1=1200//rpm of motor shaft
+d1=40//diameter of motor pulley in cm
+d2=70//diameter of 1st pulley on the shaft in cm
+s=.03//percentage slip(3%)
+d3=45//diameter of 2nd pulley
+d4=65//diameter of the pulley on the counnter shaft
+//=========================================================================================
+//calculation
+n2=n1*d1*(1-s)/d2//rpm of driven shaft
+n3=n2//both the pulleys are mounted on the same shaft
+n4=n3*(1-s)*d3/d4//rpm of counter shaft
+
+//output
+printf('the speed of driven shaft is %f rpm\nthe speed of counter shaft is %f rpm',n2,n4)
diff --git a/1835/CH2/EX2.3/Ex2_3.sce b/1835/CH2/EX2.3/Ex2_3.sce new file mode 100755 index 000000000..ef6795950 --- /dev/null +++ b/1835/CH2/EX2.3/Ex2_3.sce @@ -0,0 +1,18 @@ +//CHAPTER 2 ILLUSTRATION 3 PAGE NO:58
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//==============================================================================
+//input
+d1=30//diameter of 1st shaft in cm
+d2=50//diameter 2nd shaft in cm
+pi=3.141
+c=500//centre distance between the shafts in cm
+//==============================================================================
+//calculation
+L1=((d1+d2)*pi/2)+(2*c)+((d1+d2)^2)/(4*c)//lenth of cross belt
+L2=((d1+d2)*pi/2)+(2*c)+((d1-d2)^2)/(4*c)//lenth of open belt
+r=L1-L2//remedy
+//==============================================================================
+//OUTPUT
+printf('length of cross belt is %3.3fcm \n length of open belt is %3.3f cm \n the length of the belt to be shortened is %3.0f cm',L1,L2,r)
diff --git a/1835/CH2/EX2.4/Ex2_4.sce b/1835/CH2/EX2.4/Ex2_4.sce new file mode 100755 index 000000000..9f166ee85 --- /dev/null +++ b/1835/CH2/EX2.4/Ex2_4.sce @@ -0,0 +1,28 @@ +//CHAPTER 2,ILLUSTRATION 4 PAGE 59
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//====================================================================================
+//INPUT
+D1=.5// DIAMETER OF 1ST SHAFT IN m
+D2=.25// DIAMETER OF 2nd SHAFT IN m
+C=2// CENTRE DISTANCE IN m
+N1=220// SPEED OF 1st SHAFT
+T1=1250// TENSION ON TIGHT SIDE IN N
+U=.25// COEFFICIENT OF FRICTION
+PI=3.141
+e=2.71
+//====================================================================================
+//CALCULATION
+L=(D1+D2)*PI/2+((D1+D2)^2/(4*C))+2*C
+F=(D1+D2)/(2*C)
+ALPHA=asind(F)
+THETA=(180+(2*ALPHA))*PI/180// ANGLE OF CONTACT IN radians
+T2=T1/(e^(U*THETA))// TENSION ON SLACK SIDE IN N
+V=PI*D1*N1/60// VELOCITY IN m/s
+P=(T1-T2)*V/1000// POWER IN kW
+//====================================================================================
+//OUTPUT
+printf('\nLENGTH OF BELT REQUIRED =%f m',L)
+printf('\nANGLE OF CONTACT =%f radians',THETA)
+printf('\nPOWER CAN BE TRANSMITTED=%f kW',P)
diff --git a/1835/CH2/EX2.5/Ex2_5.sce b/1835/CH2/EX2.5/Ex2_5.sce new file mode 100755 index 000000000..d6661126f --- /dev/null +++ b/1835/CH2/EX2.5/Ex2_5.sce @@ -0,0 +1,44 @@ +//CHAPTER 2,ILLUSTRATION 5 PAGE 5
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//=====================================================================================================
+//input
+n1=100// of driving shaft
+n2=240//speed of driven shaft
+p=11000//power to be transmitted in watts
+c=250//centre distance in cm
+d2=60//diameter in cm
+b=11.5*10^-2//width of belt in metres
+t=1.2*10^-2//thickness in metres
+u=.25//co-efficient of friction
+pi=3.141
+e=2.71
+//===================================================================================================
+//calculation for open bely drive
+d1=n2*d2/n1
+f=(d1-d2)/(2*c)//sin(alpha) for open bely drive
+//angle of arc of contact for open belt drive is,theta=180-2*alpha
+alpha=asind(f)
+teta=(180-(2*alpha))*3.147/180//pi/180 is used to convert into radians
+x=(e^(u*teta))//finding out the value of t1/t2
+v=pi*d2*10*n2/60//finding out the value of t1-t2
+y=p*1000/(v)
+t1=(y*x)/(x-1)
+Fb=t1/(t*b)/1000
+//=======================================================================================================
+//calculation for cross belt drive bely drive
+F=(d1+d2)/(2*c)//for cross belt drive bely drive
+ALPHA=asind(F)
+THETA=(180+(2*ALPHA))*pi/180//pi/180 is used to convert into radians
+X=(e^(u*THETA))//finding out the value of t1/t2
+V=pi*d2*10*n2/60//finding out the value of t1-t2
+Y=p*1000/(V)
+T1=(Y*X)/(X-1)
+Fb2=T1/(t*b)/1000
+//========================================================================================================
+//output
+printf('for a open belt drive:\n')
+printf('the tension in belt is %.3f N\nstress induced is %.3f kN/m^2\n',t1,Fb)
+printf('for a cross belt drive:\n')
+printf('the tension in belt is %.3f N\nstress induced is %.3f kN/m^2\n',T1,Fb2)
diff --git a/1835/CH2/EX2.6/Ex2_6.sce b/1835/CH2/EX2.6/Ex2_6.sce new file mode 100755 index 000000000..6eb465cb4 --- /dev/null +++ b/1835/CH2/EX2.6/Ex2_6.sce @@ -0,0 +1,29 @@ +//CHAPTER 2,ILLUSTRATION 6 PAGE 61
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//========================================================================================
+//INPUT
+D1=80//DIAMETER OF SHAFT IN cm
+N1=160//SPEED OF 1ST SHAFT IN rpm
+N2=320//SPEED OF 2ND SHAFT IN rpm
+C=250//CENTRE DISTANCE IN CM
+U=.3//COEFFICIENT OF FRICTION
+P=4//POWER IN KILO WATTS
+e=2.71
+PI=3.141
+f=110//STRESS PER cm WIDTH OF BELT
+//========================================================================================
+//CALCULATION
+V=PI*D1*10^-2*N1/60//VELOCITY IN m/s
+Y=P*1000/V//Y=T1-T2
+D2=D1*N1/N2//DIAMETER OF DRIVEN SHAFT
+F=(D1-D2)/(2*C)
+ALPHA=asind(F)
+THETA=(180-(2*ALPHA))*PI/180//ANGLE OF CONTACT IN radians
+X=e^(U*THETA)//VALUE OF T1/T2
+T1=X*Y/(X-1)
+b=T1/f//WIDTH OF THE BELT REQUIRED
+//=======================================================================================
+//OUTPUT
+printf('THE WIDTH OF THE BELT IS %f cm',b)
diff --git a/1835/CH2/EX2.7/Ex2_7.sce b/1835/CH2/EX2.7/Ex2_7.sce new file mode 100755 index 000000000..904659567 --- /dev/null +++ b/1835/CH2/EX2.7/Ex2_7.sce @@ -0,0 +1,25 @@ +//CHAPTER 2 ILLUSRTATION 7 PAGE NO 62
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+m=1000// MASS OF THE CASTING IN kg
+PI=3.141
+THETA=2.75*2*PI// ANGLE OF CONTACT IN radians
+D=.26// DIAMETER OF DRUM IN m
+N=24// SPEED OF THE DRUM IN rpm
+U=.25// COEFFICIENT OF FRICTION
+e=2.71
+T1=9810// TENSION ON TIGHTSIDE IN N
+//=============================================================================================
+//CALCULATION
+T2=T1/(e^(U*THETA))// tension on slack side of belt in N
+W=m*9.81// WEIGHT OF CASTING IN N
+R=D/2// RADIUS OF DRUM IN m
+P=2*PI*N*W*R/60000// POWER REQUIRED IN kW
+P2=(T1-T2)*PI*D*N/60000// POWER SUPPLIED BY DRUM IN kW
+//============================================================================================
+//OUTPUT
+printf('FORCE REQUIRED BY MAN=%f N\n POWER REQUIRED TO RAISE CASTING=%f kW\n POWER SUPPLIED BY DRUM=%f kW\n',T2,P,P2)
+
diff --git a/1835/CH2/EX2.8/Ex2_8.sce b/1835/CH2/EX2.8/Ex2_8.sce new file mode 100755 index 000000000..7fd767360 --- /dev/null +++ b/1835/CH2/EX2.8/Ex2_8.sce @@ -0,0 +1,31 @@ +//CHAPTER 2,ILLUSTRATION 8 PAGE 62
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//INPUT
+t=9//THICKNESS IN mm
+b=250//WIDTH IN mm
+D=90//DIAMETER OF PULLEY IN cm
+N=336//SPEED IN rpm
+PI=3.141
+U=.35//COEFFICIENT FRICTION
+e=2.71
+THETA=120*PI/180
+Fb=2//STRESS IN MPa
+d=1000//DENSITY IN KG/M^3
+
+//CALCULATION
+M=b*10^-3*t*10^-3*d//MASS IN KG
+V=PI*D*10^-2*N/60//VELOCITY IN m/s
+Tc=M*V^2//CENTRIFUGAL TENSION
+Tmax=b*t*Fb//MAX TENSION IN N
+T1=Tmax-Tc
+T2=T1/(e^(U*THETA))
+P=(T1-T2)*V/1000
+
+//OUTPUT
+printf('THE TENSION ON TIGHT SIDE OF THE BELT IS %f N\n',T1)
+printf('THE TENSION ON SLACK SIDE OF THE BELT IS %f N\n',T2)
+printf('CENTRIFUGAL TENSION =%f N\n',Tc)
+printf('THE POWER CAPACITY OF BELT IS %f KW\n',P)
+
diff --git a/1835/CH2/EX2.9/Ex2_9.sce b/1835/CH2/EX2.9/Ex2_9.sce new file mode 100755 index 000000000..b81cc280a --- /dev/null +++ b/1835/CH2/EX2.9/Ex2_9.sce @@ -0,0 +1,31 @@ +//CHAPTER 2,ILLUSTRATION 9 PAGE 63
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//INPUT
+P=35000//POWER TO BE TRANSMITTED IN WATTS
+D=1.5//EFFECTIVE DIAMETER OF PULLEY IN METRES
+N=300//SPEED IN rpm
+e=2.71
+U=.3//COEFFICIENT OF FRICTION
+PI=3.141
+THETA=(11/24)*360*PI/180//ANGLE OF CONTACT
+density=1.1//density of belt material in Mg/m^3
+L=1//in metre
+t=9.5//THICKNESS OF BELT IN mm
+Fb=2.5//PERMISSIBLE WORK STRESS IN N/mm^2
+
+//CALCULATION
+V=PI*D*N/60//VELOCITY IN m/s
+X=P/V//X=T1-T2
+Y=e^(U*THETA)//Y=T1/T2
+T1=X*Y/(Y-1)
+Mb=t*density*L/10^3//value of m/b
+Tc=Mb*V^2//centrifugal tension/b
+Tmaxb=t*Fb//max tension/b
+b=T1/(Tmaxb-Tc)//thickness in mm
+//output
+printf('\nTENSION IN TIGHT SIDE OF THE BELT =%f N',T1)
+printf('\nTHICKNESS OF THE BELT IS =%f mm',b)
+
+
|