summaryrefslogtreecommitdiff
path: root/1835/CH1
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1835/CH1
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1835/CH1')
-rwxr-xr-x1835/CH1/EX1.1/Ex1_1.sce16
-rwxr-xr-x1835/CH1/EX1.10/Ex1_10.sce22
-rwxr-xr-x1835/CH1/EX1.11/Ex1_11.sce29
-rwxr-xr-x1835/CH1/EX1.12/Ex1_12.sce29
-rwxr-xr-x1835/CH1/EX1.13/Ex1_13.sce26
-rwxr-xr-x1835/CH1/EX1.2/Ex1_2.sce12
-rwxr-xr-x1835/CH1/EX1.3/Ex1_3.sce14
-rwxr-xr-x1835/CH1/EX1.4/Ex1_4.sce34
-rwxr-xr-x1835/CH1/EX1.5/Ex1_5.sce21
-rwxr-xr-x1835/CH1/EX1.6/Ex1_6.sce29
-rwxr-xr-x1835/CH1/EX1.7/Ex1_7.sce24
-rwxr-xr-x1835/CH1/EX1.8/Ex1_8.sce20
-rwxr-xr-x1835/CH1/EX1.9/Ex1_9.sce27
13 files changed, 303 insertions, 0 deletions
diff --git a/1835/CH1/EX1.1/Ex1_1.sce b/1835/CH1/EX1.1/Ex1_1.sce
new file mode 100755
index 000000000..3d966f78a
--- /dev/null
+++ b/1835/CH1/EX1.1/Ex1_1.sce
@@ -0,0 +1,16 @@
+//CHAPTER 1 ILLUSRTATION 1 PAGE NO 15
+//TITLE:Basic kinematics
+//Figure 1.14
+clc
+clear
+pi=3.141
+AO=200// distance between fixed centres in mm
+OB1=100// length of driving crank in mm
+AP=400// length of slotter bar in mm
+//====================================
+OAB1=asind(OB1/AO)// inclination of slotted bar with vertical in degrees
+beeta=(90-OAB1)*2// angle through which crank turns inreturn stroke in degrees
+A=(360-beeta)/beeta// ratio of time of cutting stroke to the time of return stroke
+L=2*AP*sind(90-(beeta)/2)// length of the stroke in mm
+printf('Inclination of slotted bar with vertical= %.3f degrees\n Length of the stroke= %.3f mm',OAB1,L)
+
diff --git a/1835/CH1/EX1.10/Ex1_10.sce b/1835/CH1/EX1.10/Ex1_10.sce
new file mode 100755
index 000000000..47d31439c
--- /dev/null
+++ b/1835/CH1/EX1.10/Ex1_10.sce
@@ -0,0 +1,22 @@
+//CHAPTER 1 ILLUSRTATION 10 PAGE NO 24
+//TITLE:Basic kinematics
+//Figure 1.30(a),1.30(b),1.30(c)
+clc
+clear
+pi=3.141
+Nao=300// speed of crank in rpm
+AO=.15// length of crank in m
+BA=.6// length of connecting rod in m
+//===================
+wAO=2*pi*Nao/60// angular velocity of link in rad/s
+Vao=wAO*AO// linear velocity of A with respect to 'o'
+ab=3.4// length of vector ab by measurement in m/s
+Vba=ab
+ob=4// length of vector ob by measurement in m/s
+oc=4.1// length of vector oc by measurement in m/s
+fRao=Vao^2/AO// radial component of acceleration of A with respect to O
+fRba=Vba^2/BA// radial component of acceleration of B with respect to A
+wBA=Vba/BA// angular velocity of connecting rod BA
+fTba=103// by measurement in m/s^2
+alphaBA=fTba/BA// angular acceleration of connecting rod BA
+printf('linear velocity of A with respect to O= %.3f m/s\n radial component of acceleration of A with respect to O= %.3f m/s^2\n radial component of acceleration of B with respect to A= %.3f m/s^2\n angular velocity of connecting rod B= %.3f rad/s\n angular acceleration of connecting rod BA= %.3f rad/s^2',Vao,fRao,fRba,wBA,alphaBA)
diff --git a/1835/CH1/EX1.11/Ex1_11.sce b/1835/CH1/EX1.11/Ex1_11.sce
new file mode 100755
index 000000000..98c48dc0a
--- /dev/null
+++ b/1835/CH1/EX1.11/Ex1_11.sce
@@ -0,0 +1,29 @@
+//CHAPTER 1 ILLUSRTATION 11 PAGE NO 26
+//TITLE:Basic kinematics
+//Figure 1.31(a),1.31(b),1.31(c)
+clc
+clear
+pi=3.141
+wAP=10// angular velocity of crank in rad/s
+P1A=30// length of link P1A in cm
+P2B=36// length of link P2B in cm
+AB=36// length of link AB in cm
+P1P2=60// length of link P1P2 in cm
+AP1P2=60// crank inclination in degrees
+alphaP1A=30// angulare acceleration of crank P1A in rad/s^2
+//=====================================
+Vap1=wAP*P1A/100// linear velocity of A with respect to P1 in m/s
+Vbp2=2.2// velocity of B with respect to P2 in m/s(measured from figure )
+Vba=2.06// velocity of B with respect to A in m/s(measured from figure )
+wBP2=Vbp2/(P2B*100)// angular velocity of P2B in rad/s
+wAB=Vba/(AB*100)// angular velocity of AB in rad/s
+fAB1=alphaP1A*P1A/100// tangential component of the acceleration of A with respect to P1 in m/s^2
+frAB1=Vap1^2/(P1A/100)// radial component of the acceleration of A with respect to P1 in m/s^2
+frBA=Vba^2/(AB/100)// radial component of the acceleration of B with respect to B in m/s^2
+frBP2=Vbp2^2/(P2B/100)// radial component of the acceleration of B with respect to P2 in m/s^2
+ftBA=13.62// tangential component of B with respect to A in m/s^2(measured from figure)
+ftBP2=26.62// tangential component of B with respect to P2 in m/s^2(measured from figure)
+alphaBP2=ftBP2/(P2B/100)// angular acceleration of P2B in m/s^2
+alphaBA=ftBA/(AB/100)// angular acceleration of AB in m/s^2
+//==========================
+printf('Angular acceleration of P2B=%.3f rad/s^2\n angular acceleration of AB =%.3f rad/s^2',alphaBP2,alphaBA)
diff --git a/1835/CH1/EX1.12/Ex1_12.sce b/1835/CH1/EX1.12/Ex1_12.sce
new file mode 100755
index 000000000..2a896c210
--- /dev/null
+++ b/1835/CH1/EX1.12/Ex1_12.sce
@@ -0,0 +1,29 @@
+//CHAPTER 1 ILLUSRTATION 12 PAGE NO 28
+//TITLE:Basic kinematics
+//Figure 1.32(a),1.32(b),1.32(c)
+clc
+clear
+PI=3.141
+AB=12// length of link AB in cm
+BC=48// length of link BC in cm
+CD=18// length of link CD in cm
+DE=36// length of link DE in cm
+EF=12// length of link EF in cm
+FP=36// length of link FP in cm
+Nba=200// roating speed of link BA IN rpm
+wBA=2*PI*200/60// Angular velocity of BA in rad/s
+Vba=wBA*AB/100// linear velocity of B with respect to A in m/s
+Vc=2.428// velocity of c in m/s from diagram 1.32(b)
+Vd=2.36// velocity of D in m/s from diagram 1.32(b)
+Ve=1// velocity of e in m/s from diagram 1.32(b)
+Vf=1.42// velocity of f in m/s from diagram 1.32(b)
+Vcb=1.3// velocity of c with respect to b in m/s from figure
+fBA=Vba^2*100/AB// radial component of acceleration of B with respect to A in m/s^2
+fCB=Vcb^2*100/BC// radial component of acceleration of C with respect to B in m/s^2
+fcb=3.52// radial component of acceleration of C with respect to B in m/s^2 from figure
+fC=19// acceleration of slider in m/s^2 from figure
+printf('velocity of c=%.3f m/s\n velocity of d=%.3f m/s\n velocity of e=%.3f m/s\n velocity of f=%.3f m/s\n Acceleration of slider=%f m/s^2',Vc,Vd,Ve,Vf,fC)
+
+
+
+
diff --git a/1835/CH1/EX1.13/Ex1_13.sce b/1835/CH1/EX1.13/Ex1_13.sce
new file mode 100755
index 000000000..577c49eba
--- /dev/null
+++ b/1835/CH1/EX1.13/Ex1_13.sce
@@ -0,0 +1,26 @@
+//CHAPTER 1 ILLUSRTATION 13 PAGE NO 30
+//TITLE:Basic kinematics
+//Figure 1.33(a),1.33(b),1.33(c)
+clc
+clear
+PI=3.141
+N=120// speed of the crank OC in rpm
+OC=5// length of link OC in cm
+cp=20// length of link CP in cm
+qa=10// length of link QA in cm
+pa=5// length of link PA in cm
+CP=46.9// velocity of link CP in cm/s
+QA=58.3// velocity of link QA in cm/s
+Pa=18.3// velocity of link PA in cm/s
+Vc=2*PI*N*OC/60// velocity of C in m/s
+Cco=Vc^2/OC// centripetal acceleration of C relative to O in cm/s^2
+Cpc=CP^2/cp// centripetal acceleration of P relative to C in cm/s^2
+Caq=QA^2/qa// centripetal acceleration of A relative to Q in cm/s^2
+Cap=Pa^2/pa// centripetal acceleration of A relative to P in cm/s^2
+pp1=530
+a1a=323
+a2a=207.5
+ACP=pp1/cp// angular acceleration of link CP in rad/s^2
+APA=a1a/qa// angular acceleration of link PA in rad/s^2
+AAQ=a2a/pa// angular acceleration of link AQ in rad/s^2
+printf('angular acceleration of link CP =%.3f rad/s^2\n angular acceleration of link CP=%.3f rad/s^2\n angular acceleration of link CP=%.3f rad/s^2',ACP,APA,AAQ)
diff --git a/1835/CH1/EX1.2/Ex1_2.sce b/1835/CH1/EX1.2/Ex1_2.sce
new file mode 100755
index 000000000..07778fbd2
--- /dev/null
+++ b/1835/CH1/EX1.2/Ex1_2.sce
@@ -0,0 +1,12 @@
+//CHAPTER 1 ILLUSRTATION 2 PAGE NO 16
+//TITLE:Basic kinematics
+//Figure 1.15
+clc
+clear
+OA=300// distance between the fixed centres in mm
+OB=150// length of driving crank in mm
+//================================
+OAB=asind(OB/OA)// inclination of slotted bar with vertical in degrees
+beeta=(90-OAB)*2// angle through which crank turns inreturn stroke in degrees
+A=(360-beeta)/beeta// ratio of time of cutting stroke to the time of return stroke
+printf('Ratio of time taken on the cutting to the return stroke= %.0f',A)
diff --git a/1835/CH1/EX1.3/Ex1_3.sce b/1835/CH1/EX1.3/Ex1_3.sce
new file mode 100755
index 000000000..fb82e7d12
--- /dev/null
+++ b/1835/CH1/EX1.3/Ex1_3.sce
@@ -0,0 +1,14 @@
+//CHAPTER 1 ILLUSRTATION 3 PAGE NO 16
+//TITLE:Basic kinematics
+//Figure 1.16
+clc
+clear
+OB=54.6// distance between the fixed centres in mm
+OA=85// length of driving crank in mm
+OA2=OA
+CA=160// length of slotted lever in mm
+CD=144// length of connectin rod in mm
+//================================
+beeta=2*(acosd(OB/OA2))// angle through which crank turns inreturn stroke in degrees
+A=(360-beeta)/beeta// ratio of time of cutting stroke to the time of return stroke
+printf('Ratio of time taken on the cutting to the return stroke= %.0f',A)
diff --git a/1835/CH1/EX1.4/Ex1_4.sce b/1835/CH1/EX1.4/Ex1_4.sce
new file mode 100755
index 000000000..3dc91d80a
--- /dev/null
+++ b/1835/CH1/EX1.4/Ex1_4.sce
@@ -0,0 +1,34 @@
+//CHAPTER 1 ILLUSRTATION 4 PAGE NO 17
+//TITLE:Basic kinematics
+//Figure 1.18,1.19
+clc
+clear
+pi=3.141
+Nao=180// speed of the crank in rpm
+wAO=2*pi*Nao/60// angular speed of the crank in rad/s
+AO=.5// crank length in m
+AE=.5
+Vao=wAO*AO// velocity of A in m/s
+//================================
+Vb1=8.15// velocity of piston B in m/s by measurment from figure 1.19
+Vba=6.8// velocity of B with respect to A in m/s
+AB=2// length of connecting rod in m
+wBA=Vba/AB// angular velocity of the connecting rod BA in rad/s
+ae=AE*Vba/AB// velocity of point e on the connecting rod
+oe=8.5// by measurement velocity of point E
+Do=.05// diameter of crank shaft in m
+Da=.06// diameter of crank pin in m
+Db=.03// diameter of cross head pin B m
+V1=wAO*Do/2// velocity of rubbing at the pin of the crankshaft in m/s
+V2=wBA*Da/2// velocity of rubbing at the pin of the crank in m/s
+Vb=(wAO+wBA)*Db/2// velocity of rubbing at the pin of cross head in m/s
+ag=5.1// by measurement
+AG=AB*ag/Vba// position and linear velocity of point G on the connecting rod in m
+//===============================
+printf('Velocity of piston B= %.3f m/s\n Angular velocity of connecting rod= %.3f rad/s\n velocity of point E=%.1f m/s\n velocity of rubbing at the pin of the crankshaft=%.3f m/s\n velocity of rubbing at the pin of the crank =%.3f m/s\n velocity of rubbing at the pin of cross head =%.3f m/s\n position and linear velocity of point G on the connecting rod=%.3f m',Vb1,wBA,oe,V1,V2,Vb,AG)
+
+
+
+
+
+
diff --git a/1835/CH1/EX1.5/Ex1_5.sce b/1835/CH1/EX1.5/Ex1_5.sce
new file mode 100755
index 000000000..444b15051
--- /dev/null
+++ b/1835/CH1/EX1.5/Ex1_5.sce
@@ -0,0 +1,21 @@
+//CHAPTER 1 ILLUSRTATION 5 PAGE NO 19
+//TITLE:Basic kinematics
+//Figure 1.20,1.21
+clc
+clear
+pi=3.141
+N=120// speed of crank in rpm
+OA=10// length of crank in cm
+BP=48// from figure 1.20 in cm
+BA=40// from figure 1.20 in cm
+//==============
+w=2*pi*N/60// angular velocity of the crank OA in rad/s
+Vao=w*OA// velocity of ao in cm/s
+ba=4.5// by measurement from 1.21 in cm
+Bp=BP*ba/BA
+op=6.8// by measurement in cm from figure 1.21
+s=20// scale of velocity diagram 1cm=20cm/s
+Vp=op*s// linear velocity of P in m/s
+ob=5.1// by measurement in cm from figure 1.21
+Vb=ob*s// linear velocity of slider B
+printf('Linear velocity of slider B= %.2f cm/s\n Linear velocity of point P= %.2f cm/s',Vb,Vp)
diff --git a/1835/CH1/EX1.6/Ex1_6.sce b/1835/CH1/EX1.6/Ex1_6.sce
new file mode 100755
index 000000000..62033320c
--- /dev/null
+++ b/1835/CH1/EX1.6/Ex1_6.sce
@@ -0,0 +1,29 @@
+
+//CHAPTER 1 ILLUSRTATION 6 PAGE NO 20
+//TITLE:Basic kinematics
+//Figure 1.22,1.23
+clc
+clear
+pi=3.141
+AB=6.25// length of link AB in cm
+BC=17.5// length of link BC in cm
+CD=11.25// length of link CD in cm
+DA=20// length of link DA in cm
+CE=10
+N=100// speed of crank in rpm
+//========================
+wAB=2*pi*N/60// angular velocity of AB in rad/s
+Vb=wAB*AB// linear velocity of B with respect to A
+s=15// scale for velocity diagram 1 cm= 15 cm/s
+dc=3// by measurement in cm
+Vcd=dc*s
+wCD=Vcd/CD// angular velocity of link CD in rad/s
+bc=2.5// by measurement in cm
+Vbc=bc*s
+wBC=Vbc/BC// angular velocity of link BC in rad/s
+ce=bc*CE/BC
+ae=3.66// by measurement in cm
+Ve=ae*s// velocity of point E 10 from c on the link BC
+af=2.94// by measurement in cm
+Vf=af*s// velocity of point F
+printf('The angular velocity of link CD= %.3f rad/s\n The angular velocity of link BC= %.3f rad/s\n velocity of point E 10 from c on the link BC= %.3f cm/s\n velocity of point F= %.3f cm/s',wCD,wBC,Ve,Vf)
diff --git a/1835/CH1/EX1.7/Ex1_7.sce b/1835/CH1/EX1.7/Ex1_7.sce
new file mode 100755
index 000000000..e8cc42b98
--- /dev/null
+++ b/1835/CH1/EX1.7/Ex1_7.sce
@@ -0,0 +1,24 @@
+//CHAPTER 1 ILLUSRTATION 7 PAGE NO 21
+//TITLE:Basic kinematics
+//Figure 1.24,1.25
+clc
+clear
+pi=3.141
+Noa=600// speed of the crank in rpm
+OA=2.8// length of link OA in cm
+AB=4.4// length of link AB in cm
+BC=4.9// length of link BC in cm
+BD=4.6// length of link BD in cm
+//=================
+wOA=2*pi*Noa/60// angular velocity of crank in rad/s
+Vao=wOA*OA// The linear velocity of point A with respect to oin m/s
+s=50// scale of velocity diagram in cm
+od=2.95// by measurement in cm from figure
+Vd=od*s/100// linear velocity slider in m/s
+bd=3.2// by measurement in cm from figure
+Vbd=bd*s
+wBD=Vbd/BD// angular velocity of link BD
+printf('linear velocity slider D= %.3f m/s\n angular velocity of link BD= %.1f rad/s',Vd,wBD)
+
+
+
diff --git a/1835/CH1/EX1.8/Ex1_8.sce b/1835/CH1/EX1.8/Ex1_8.sce
new file mode 100755
index 000000000..aefe6d139
--- /dev/null
+++ b/1835/CH1/EX1.8/Ex1_8.sce
@@ -0,0 +1,20 @@
+//CHAPTER 1 ILLUSRTATION 8 PAGE NO 22
+//TITLE:Basic kinematics
+//Figure 1.26,1.27
+clc
+clear
+pi=3.141
+Noa=60// speed of crank in rpm
+OA=30// length of link OA in cm
+AB=100// length of link AB in cm
+CD=80// length of link CD in cm
+//AC=CB
+//================
+wOA=2*pi*Noa/60// angular velocity of crank in rad/s
+Vao=wOA*OA/100// linear velocity of point A with respect to O
+s=50// scale for velocity diagram 1 cm= 50 cm/s
+ob=3.4// by measurement in cm from figure 1.27
+od=.9// by measurement in cm from figure 1.27
+Vcd=160// by measurement in cm/s from figure 1.27
+wCD=Vcd/CD// angular velocity of link in rad/s
+printf('Angular velocity of link CD= %d rad/s',wCD)
diff --git a/1835/CH1/EX1.9/Ex1_9.sce b/1835/CH1/EX1.9/Ex1_9.sce
new file mode 100755
index 000000000..b0e46a52a
--- /dev/null
+++ b/1835/CH1/EX1.9/Ex1_9.sce
@@ -0,0 +1,27 @@
+//CHAPTER 1 ILLUSRTATION 9 PAGE NO 23
+//TITLE:Basic kinematics
+//Figure 1.28,1.29
+clc
+clear
+pi=3.141
+Nao=120// speed of the crank in rpm
+OQ=10// length of link OQ in cm
+OA=20// length of link OA in cm
+QC=15// length of link QC in cm
+CD=50// length oflink CD in cm
+//=============
+wOA=2*pi*Nao/60// angular speed of crank in rad/s
+Vad=wOA*OA/100// velocity of pin A in m/s
+BQ=41// from figure 1.29
+BC=26// from firure 1.29
+bq=4.7// from figure 1.29
+bc=bq*BC/BQ// from figure 1.29 in cm
+s=50// scale for velocity diagram in cm/s
+od=1.525// velocity vector od in cm from figure 1.29
+Vd=od*s// velocity of ram D in cm/s
+dc=1.925// velocity vector dc in cm from figure 1.29
+Vdc=dc*s// velocity of link CD in cm/s
+wCD=Vdc/CD// angular velocity of link CD in cm/s
+ba=1.8// velocity vector of sliding of the block in cm
+Vab=ba*s// velocity of sliding of the block in cm/s
+printf('Velocity of RAM D= %.3f cm/s\n angular velocity of link CD= %.3f rad/s\n velocity of sliding of the block= %.3f cm/s',Vd,wCD,Vab)