diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1820/CH8 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1820/CH8')
-rwxr-xr-x | 1820/CH8/EX8.1/Example8_1.sce | 33 | ||||
-rwxr-xr-x | 1820/CH8/EX8.2/Example8_2.sce | 33 |
2 files changed, 66 insertions, 0 deletions
diff --git a/1820/CH8/EX8.1/Example8_1.sce b/1820/CH8/EX8.1/Example8_1.sce new file mode 100755 index 000000000..ed8980a05 --- /dev/null +++ b/1820/CH8/EX8.1/Example8_1.sce @@ -0,0 +1,33 @@ +// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN
+// TURAN GONEN
+// CRC PRESS
+// SECOND EDITION
+
+// CHAPTER : 8 : LIMITING FACTORS FOR EXTRA-HIGH AND ULTRAHIGH VOLTAGE TRANSMISSION
+
+// EXAMPLE : 8.1 :
+clear ; clc ; close ; // Clear the work space and console
+
+// GIVEN DATA
+m_0 = 0.90 ; // Irregularity factor
+p = 74 ; // Atmospheric pressure in Hg
+t = 10 ; // temperature in degree celsius
+D = 550 ; // Equilateral spacing b/w conductors in cm
+d = 3 ; // overall diameter in cm
+
+// CALCULATIONS
+// For case (a)
+r = d/2 ;
+delta = 3.9211 * p/( 273 + t ) ; // air density factor
+V_0_ph = 21.1 * delta * m_0 * r * log(D/r) ; // disruptive critical rms line voltage in kV/phase
+V_0 = sqrt(3) * V_0_ph ; // disruptive critical rms line voltage in kV
+
+// For case (b)
+m_v = m_0 ;
+V_v_ph = 21.1*delta*m_v*r*(1 + (0.3/sqrt(delta*r) )) * log(D/r) ; // visual critical rms line voltage in kV/phase
+V_v = sqrt(3)*V_v_ph ; // visual critical rms line voltage in kV
+
+// DISPLAY RESULTS
+disp("EXAMPLE : 8.1 : SOLUTION :-") ;
+printf("\n (a) Disruptive critical rms line voltage , V_0 = %.1f kV \n",V_0) ;
+printf("\n (b) Visual critical rms line voltage , V_v = %.1f kV \n",V_v) ;
diff --git a/1820/CH8/EX8.2/Example8_2.sce b/1820/CH8/EX8.2/Example8_2.sce new file mode 100755 index 000000000..e188f128b --- /dev/null +++ b/1820/CH8/EX8.2/Example8_2.sce @@ -0,0 +1,33 @@ +// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN
+// TURAN GONEN
+// CRC PRESS
+// SECOND EDITION
+
+// CHAPTER : 8 : LIMITING FACTORS FOR EXTRA-HIGH AND ULTRAHIGH VOLTAGE TRANSMISSION
+
+// EXAMPLE : 8.2 :
+clear ; clc ; close ; // Clear the work space and console
+
+// GIVEN DATA
+f = 60 ; // freq in Hz
+d = 3 ; // overall diameter in cm
+D = 550 ; // Equilateral spacing b/w conductors in cm
+V1 = 345 ; // operating line voltage in kV
+V_0 = 172.4 ; // disruptive critical voltage in kV
+L = 50 ; // line length in mi
+p = 74 ; // Atmospheric pressure in Hg
+t = 10 ; // temperature in degree celsius
+m_0 = 0.90 ; // Irregularity factor
+
+// CALCULATIONS
+r = d/2 ;
+delta = 3.9211 * p/( 273 + t ) ; // air density factor
+V_0 = 21.1 * delta * m_0 * r * log(D/r) ; // disruptive critical rms line voltage in kV/phase
+V =V1/sqrt(3) ; // Line to neutral operating voltage in kV
+P_c = (390/delta)*(f+25)*sqrt(r/D)*(V - V_0)^2 * 10^-5 ; // Fair weather corona loss per phase in kW/mi/phase
+P_cT = P_c * L ; // For total line length corona loss in kW/phase
+T_P_c = 3 * P_cT ; // Total corona loss of line in kW
+
+// DISPLAY RESULTS
+disp("EXAMPLE : 8.2 : SOLUTION :-") ;
+printf("\n (a) Total fair weather corona loss of the line , P_c = %.1f kW \n",T_P_c) ;
|