From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1820/CH8/EX8.1/Example8_1.sce | 33 +++++++++++++++++++++++++++++++++ 1820/CH8/EX8.2/Example8_2.sce | 33 +++++++++++++++++++++++++++++++++ 2 files changed, 66 insertions(+) create mode 100755 1820/CH8/EX8.1/Example8_1.sce create mode 100755 1820/CH8/EX8.2/Example8_2.sce (limited to '1820/CH8') diff --git a/1820/CH8/EX8.1/Example8_1.sce b/1820/CH8/EX8.1/Example8_1.sce new file mode 100755 index 000000000..ed8980a05 --- /dev/null +++ b/1820/CH8/EX8.1/Example8_1.sce @@ -0,0 +1,33 @@ +// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN +// TURAN GONEN +// CRC PRESS +// SECOND EDITION + +// CHAPTER : 8 : LIMITING FACTORS FOR EXTRA-HIGH AND ULTRAHIGH VOLTAGE TRANSMISSION + +// EXAMPLE : 8.1 : +clear ; clc ; close ; // Clear the work space and console + +// GIVEN DATA +m_0 = 0.90 ; // Irregularity factor +p = 74 ; // Atmospheric pressure in Hg +t = 10 ; // temperature in degree celsius +D = 550 ; // Equilateral spacing b/w conductors in cm +d = 3 ; // overall diameter in cm + +// CALCULATIONS +// For case (a) +r = d/2 ; +delta = 3.9211 * p/( 273 + t ) ; // air density factor +V_0_ph = 21.1 * delta * m_0 * r * log(D/r) ; // disruptive critical rms line voltage in kV/phase +V_0 = sqrt(3) * V_0_ph ; // disruptive critical rms line voltage in kV + +// For case (b) +m_v = m_0 ; +V_v_ph = 21.1*delta*m_v*r*(1 + (0.3/sqrt(delta*r) )) * log(D/r) ; // visual critical rms line voltage in kV/phase +V_v = sqrt(3)*V_v_ph ; // visual critical rms line voltage in kV + +// DISPLAY RESULTS +disp("EXAMPLE : 8.1 : SOLUTION :-") ; +printf("\n (a) Disruptive critical rms line voltage , V_0 = %.1f kV \n",V_0) ; +printf("\n (b) Visual critical rms line voltage , V_v = %.1f kV \n",V_v) ; diff --git a/1820/CH8/EX8.2/Example8_2.sce b/1820/CH8/EX8.2/Example8_2.sce new file mode 100755 index 000000000..e188f128b --- /dev/null +++ b/1820/CH8/EX8.2/Example8_2.sce @@ -0,0 +1,33 @@ +// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN +// TURAN GONEN +// CRC PRESS +// SECOND EDITION + +// CHAPTER : 8 : LIMITING FACTORS FOR EXTRA-HIGH AND ULTRAHIGH VOLTAGE TRANSMISSION + +// EXAMPLE : 8.2 : +clear ; clc ; close ; // Clear the work space and console + +// GIVEN DATA +f = 60 ; // freq in Hz +d = 3 ; // overall diameter in cm +D = 550 ; // Equilateral spacing b/w conductors in cm +V1 = 345 ; // operating line voltage in kV +V_0 = 172.4 ; // disruptive critical voltage in kV +L = 50 ; // line length in mi +p = 74 ; // Atmospheric pressure in Hg +t = 10 ; // temperature in degree celsius +m_0 = 0.90 ; // Irregularity factor + +// CALCULATIONS +r = d/2 ; +delta = 3.9211 * p/( 273 + t ) ; // air density factor +V_0 = 21.1 * delta * m_0 * r * log(D/r) ; // disruptive critical rms line voltage in kV/phase +V =V1/sqrt(3) ; // Line to neutral operating voltage in kV +P_c = (390/delta)*(f+25)*sqrt(r/D)*(V - V_0)^2 * 10^-5 ; // Fair weather corona loss per phase in kW/mi/phase +P_cT = P_c * L ; // For total line length corona loss in kW/phase +T_P_c = 3 * P_cT ; // Total corona loss of line in kW + +// DISPLAY RESULTS +disp("EXAMPLE : 8.2 : SOLUTION :-") ; +printf("\n (a) Total fair weather corona loss of the line , P_c = %.1f kW \n",T_P_c) ; -- cgit