summaryrefslogtreecommitdiff
path: root/1820/CH4/EX4.15
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1820/CH4/EX4.15
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1820/CH4/EX4.15')
-rwxr-xr-x1820/CH4/EX4.15/Example4_15.sce55
1 files changed, 55 insertions, 0 deletions
diff --git a/1820/CH4/EX4.15/Example4_15.sce b/1820/CH4/EX4.15/Example4_15.sce
new file mode 100755
index 000000000..93ac6eccf
--- /dev/null
+++ b/1820/CH4/EX4.15/Example4_15.sce
@@ -0,0 +1,55 @@
+// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN
+// TURAN GONEN
+// CRC PRESS
+// SECOND EDITION
+
+// CHAPTER : 4 : OVERHEAD POWER TRANSMISSION
+
+// EXAMPLE : 4.15 :
+clear ; clc ; close ; // Clear the work space and console
+
+// GIVEN DATA
+D_12 = 26 ; // distances in feet
+D_23 = 26 ; // distances in feet
+D_31 = 52 ; // distances in feet
+d = 12 ; // Distance b/w 2 subconductors in inches
+f = 60 ; // frequency in Hz
+kv = 345 ; // voltage base in kv
+p = 100 ; // Power base in MVA
+l = 200 ; // length of line in km
+
+// CALCULATIONS
+// For case (a)
+D_S = 0.0435 ; // from A.3 Appendix A . Geometric mean radius in feet
+D_bS = sqrt(D_S * 0.3048 * d * 0.0254) ; // GMR of bundled conductor in m .[1 ft = 0.3048 m ; 1 inch = 0.0254 m]
+D_eq = (D_12 * D_23 * D_31 * 0.3048^3)^(1/3) ; // Equ GMR in meter
+L_a = 2 * 10^-7 * log(D_eq/D_bS); // Inductance in H/meter
+
+// For case (b)
+X_L = 2 * %pi * f * L_a ; // inductive reactance/phase in ohms/m
+X_L0 = X_L * 10^3 ; // inductive reactance/phase in ohms/km
+X_L1 = X_L0 * 1.609 ;// inductive reactance/phase in ohms/mi [1 mi = 1.609 km]
+
+// For case (c)
+Z_B = kv^2 / p ; // Base impedance in Ω
+X_L2 = X_L0 * l/Z_B ; // Series reactance of line in pu
+
+// For case (d)
+r = 1.293*0.3048/(2*12) ; // radius in m . outside diameter is 1.293 inch given in A.3
+D_bsC = sqrt(r * d * 0.0254) ;
+C_n = 55.63 * 10^-12/log(D_eq/D_bsC) ; // capacitance of line in F/m
+
+// For case (e)
+X_C = 1/( 2 * %pi * f * C_n ) ; // capacitive reactance in ohm-m
+X_C0 = X_C * 10^-3 ; // capacitive reactance in ohm-km
+X_C1 = X_C0/1.609 ; // capacitive reactance in ohm-mi
+
+// DISPLAY RESULTS
+disp("EXAMPLE : 4.15 : SOLUTION :-") ;
+printf("\n (a) Average inductance per phase , L_a = %.4e H/m \n",L_a) ;
+printf("\n (b) Inductive reactance per phase , X_L = %.4f Ω/km \n",X_L0) ;
+printf("\n Inductive reactance per phase , X_L = %.4f Ω/mi \n",X_L1) ;
+printf("\n (c) Series reactance of line , X_L = %.4f pu \n",X_L2) ;
+printf("\n (d) Line-to-neutral capacitance of line , C_n = %.4e F/m \n",C_n);
+printf("\n (e) Capacitive reactance to neutral of line , X_C = %.3e Ω-km \n",X_C0) ;
+printf("\n Capacitive reactance to neutral of line , X_C = %.3e Ω-mi \n",X_C1) ;