From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1820/CH4/EX4.15/Example4_15.sce | 55 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 55 insertions(+) create mode 100755 1820/CH4/EX4.15/Example4_15.sce (limited to '1820/CH4/EX4.15') diff --git a/1820/CH4/EX4.15/Example4_15.sce b/1820/CH4/EX4.15/Example4_15.sce new file mode 100755 index 000000000..93ac6eccf --- /dev/null +++ b/1820/CH4/EX4.15/Example4_15.sce @@ -0,0 +1,55 @@ +// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN +// TURAN GONEN +// CRC PRESS +// SECOND EDITION + +// CHAPTER : 4 : OVERHEAD POWER TRANSMISSION + +// EXAMPLE : 4.15 : +clear ; clc ; close ; // Clear the work space and console + +// GIVEN DATA +D_12 = 26 ; // distances in feet +D_23 = 26 ; // distances in feet +D_31 = 52 ; // distances in feet +d = 12 ; // Distance b/w 2 subconductors in inches +f = 60 ; // frequency in Hz +kv = 345 ; // voltage base in kv +p = 100 ; // Power base in MVA +l = 200 ; // length of line in km + +// CALCULATIONS +// For case (a) +D_S = 0.0435 ; // from A.3 Appendix A . Geometric mean radius in feet +D_bS = sqrt(D_S * 0.3048 * d * 0.0254) ; // GMR of bundled conductor in m .[1 ft = 0.3048 m ; 1 inch = 0.0254 m] +D_eq = (D_12 * D_23 * D_31 * 0.3048^3)^(1/3) ; // Equ GMR in meter +L_a = 2 * 10^-7 * log(D_eq/D_bS); // Inductance in H/meter + +// For case (b) +X_L = 2 * %pi * f * L_a ; // inductive reactance/phase in ohms/m +X_L0 = X_L * 10^3 ; // inductive reactance/phase in ohms/km +X_L1 = X_L0 * 1.609 ;// inductive reactance/phase in ohms/mi [1 mi = 1.609 km] + +// For case (c) +Z_B = kv^2 / p ; // Base impedance in Ω +X_L2 = X_L0 * l/Z_B ; // Series reactance of line in pu + +// For case (d) +r = 1.293*0.3048/(2*12) ; // radius in m . outside diameter is 1.293 inch given in A.3 +D_bsC = sqrt(r * d * 0.0254) ; +C_n = 55.63 * 10^-12/log(D_eq/D_bsC) ; // capacitance of line in F/m + +// For case (e) +X_C = 1/( 2 * %pi * f * C_n ) ; // capacitive reactance in ohm-m +X_C0 = X_C * 10^-3 ; // capacitive reactance in ohm-km +X_C1 = X_C0/1.609 ; // capacitive reactance in ohm-mi + +// DISPLAY RESULTS +disp("EXAMPLE : 4.15 : SOLUTION :-") ; +printf("\n (a) Average inductance per phase , L_a = %.4e H/m \n",L_a) ; +printf("\n (b) Inductive reactance per phase , X_L = %.4f Ω/km \n",X_L0) ; +printf("\n Inductive reactance per phase , X_L = %.4f Ω/mi \n",X_L1) ; +printf("\n (c) Series reactance of line , X_L = %.4f pu \n",X_L2) ; +printf("\n (d) Line-to-neutral capacitance of line , C_n = %.4e F/m \n",C_n); +printf("\n (e) Capacitive reactance to neutral of line , X_C = %.3e Ω-km \n",X_C0) ; +printf("\n Capacitive reactance to neutral of line , X_C = %.3e Ω-mi \n",X_C1) ; -- cgit