diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1775/CH4 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1775/CH4')
27 files changed, 966 insertions, 0 deletions
diff --git a/1775/CH4/EX4.1/Chapter4_Example1.sce b/1775/CH4/EX4.1/Chapter4_Example1.sce new file mode 100755 index 000000000..9b035a170 --- /dev/null +++ b/1775/CH4/EX4.1/Chapter4_Example1.sce @@ -0,0 +1,35 @@ +//Chapter-4, Illustration 1, Page 161
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P1=3.5;//Pressure at entry in MN/(m^2)
+T1=773;//Temperature at entry in K
+P2=0.7;//Pressure at exit in MN/(m^2)
+ma=1.3;//mass flow rate of air in kg/s
+y=1.4;//Ratio of specific heats
+R=0.287;//Universal gas constant in KJ/Kg-K
+
+//CALCULATIONS
+c=y/(y-1);//Ratio
+Pt=((2/(y+1))^c)*P1;//Throat pressure in MN/(m^2)
+v1=(R*T1)/(P1*1000);//Specific volume at entry in (m^3)/kg
+Ct=((2*c*P1*v1*(1-((Pt/P1)^(1/c))))^0.5)*1000;//Velocity at throat in m/s
+vt=v1*((P1/Pt)^(1/y));//Specific volume at throat in (m^3)/kg
+At=((ma*vt)/Ct)*(10^6);//Area of throat in (mm^2)
+C2=((2*c*P1*v1*(1-((P2/P1)^(1/c))))^0.5)*1000;//Velocity at exit in m/s
+v2=v1*((P1/P2)^(1/y));//Specific volume at exit in (m^3)/kg
+A2=((ma*v2)/C2)*(10^6);//Area of exit in (mm^2)
+M=C2/Ct;//Mach number at exit
+
+//OUTPUT
+mprintf('Throat area is %3.0f (mm^2) \n Exit area is %3.0f (mm^2) \n Mach number at exit is %3.2f',At,A2,M)
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.10/Chapter4_Example10.sce b/1775/CH4/EX4.10/Chapter4_Example10.sce new file mode 100755 index 000000000..5ad442899 --- /dev/null +++ b/1775/CH4/EX4.10/Chapter4_Example10.sce @@ -0,0 +1,30 @@ +//Chapter-4, Illustration 10, Page 173
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P1=10.5;//Pressure at point 1 in bar
+x1=0.95;//Dryness fraction
+n=1.135;//Adiabatic gas constant
+P2=0.85;//Pressure at point 2 in bar
+vg=0.185;//Specific volume in m^3/kg
+
+
+//CALCULATIONS
+c=n/(n-1);//Ratio
+Pt=((2/(n+1))^c)*P1;//Throat pressure in MN/(m^2)
+v1=x1*vg;//Specific volume at point 1 in m^3/kg
+Ct=sqrt((2*n*P1*v1*(10^5)/(n+1)));//Velocity at throat in m/s
+vt=((P1/Pt)*(v1^n))^(1/1.135);//Specific volume at throat in m^3/kg
+m=Ct/vt;//Mass flow rate per unit throat area in kg/(m^2)
+
+//OUTPUT
+mprintf('Throat velocity is %3.2f m/s \n Mass flow rate of steam is %3.2f kg/(m^2)',Ct,m)
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.11/Chapter4_Example11.sce b/1775/CH4/EX4.11/Chapter4_Example11.sce new file mode 100755 index 000000000..7ba02eb0c --- /dev/null +++ b/1775/CH4/EX4.11/Chapter4_Example11.sce @@ -0,0 +1,29 @@ +//Chapter-4, Illustration 11, Page 174
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P1=10;//Pressure at point 1 in bar
+T1=452.9;//Temperature at point 1 in K
+P2=4;//Pressure at point 2 in bar
+n=1.3;//Adiabatic gas constant
+Ps=0.803;//Saturation pressure at T2 in bar
+Ts=143.6;//Saturation temperature at P2 in oC
+//CALCULATIONS
+x=(n-1)/n;//Ratio
+T2=((P2/P1)^x)*T1;//Temperature at point 2 in K
+Ds=P2/Ps;//Degree of supersaturation
+Du=Ts-(T2-273);//Degree of undercooling
+
+//OUTPUT
+mprintf('Degree of supersaturation is %3.2f \n Degree of undercooling %3.0f oC',Ds,Du)
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.12/Chapter4_Example12.sce b/1775/CH4/EX4.12/Chapter4_Example12.sce new file mode 100755 index 000000000..f08eaadaf --- /dev/null +++ b/1775/CH4/EX4.12/Chapter4_Example12.sce @@ -0,0 +1,35 @@ +//Chapter-4, Illustration 12, Page 174
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P1=9;//Pressure at point 1 in bar
+P2=1;//Pressure at point 2 in bar
+Dt=0.0025;//Throat diameter in m
+nN=0.9;//Nozzle efficiency
+n=1.135;//Adiabatic gas consstant
+h1=2770;//Enthalpy at point 1 in kJ/kg
+ht=2670;//Throat enthlapy in kJ/kg
+h3=2400;//Enthlapy at point 2 in kJ/kg
+x2=0.96;//Dryness fraction 2
+vg2=0.361;//Specific volume in m^3/kg
+
+//CALCULATIONS
+x=n/(n-1);//Ratio
+Pt=((2/(n+1))^x)*P1;//Throat pressure in bar
+Ct=sqrt(2000*(h1-ht)*nN);//Throat velocity in m/s
+At=(3.147*2*(Dt^2))/4;//Throat area in m^2
+vt=x2*vg2;//Specific volume at throat in m^3/kg
+m=(At*Ct)/vt;//Mass flow rate of steam in kg/s
+hact=nN*(h1-h3);//Actual enthalpy drop in kJ/kg
+C2=sqrt(2000*hact);//Exit velocity of steam in m/s
+
+//OUTPUT
+mprintf('Quantity of steam used per second is %3.3f kg/s \n Exit velocity of steam is %3.2f m/s',m,C2)
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.13/Chapter4_Example13.sce b/1775/CH4/EX4.13/Chapter4_Example13.sce new file mode 100755 index 000000000..0266e4094 --- /dev/null +++ b/1775/CH4/EX4.13/Chapter4_Example13.sce @@ -0,0 +1,30 @@ +//Chapter-4, Illustration 13, Page 202
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+C1=1000;//Steam velocity in m/s
+a1=20;//Nozzle angle in degrees
+U=400;//Mean blade speed in m/s
+m=0.75;//Mass flow rate of steam in kg/s
+b1=33;//Blade angle at inlet from the velocity triangle in degrees
+b2=b1;//Blade angle at exit from the velocity triangle in degrees
+Cx=1120;//Change in whirl velocity from the velocity triangle in m/s
+Ca=0;//Change in axial velocity from the velocity triangle in m/s
+
+//CALCULATIONS
+Fx=m*Cx;//Tangential force on blades in N
+Fy=m*Ca;//Axial thrust in N
+W=(m*Cx*U)/1000;//Diagram power in kW
+ndia=((2*U*Cx)/(C1^2))*100;//Diagram efficiency
+
+//OUTPUT
+mprintf('Blade angles are %3.0f degrees,%3.0f degrees \n Tangential force on blades is %3.0f N \n Axial thrust is %3.0f \n Diagram power is %3.0f kW \n Diagram efficiency %3.1f percent',b1,b2,Fx,Fy,W,ndia)
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.14/Chapter4_Example14.sce b/1775/CH4/EX4.14/Chapter4_Example14.sce new file mode 100755 index 000000000..083a1ff51 --- /dev/null +++ b/1775/CH4/EX4.14/Chapter4_Example14.sce @@ -0,0 +1,34 @@ +//Chapter-4, Illustration 14, Page 203
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+D=2.5;//Mean diameter of blade ring in m
+N=3000;//Speed in rpm
+a1=20;//Nozzle angle in degrees
+r=0.4;//Ratio blade velocity to steam velocity
+Wr=0.8;//Blade friction factor
+m=10;//Steam flow in kg/s
+x=3;//Sum in blade angles in degrees
+b1=32.5;//Blade angle at inlet from the velocity triangle in degrees
+W1=626.7;//Relative velocity at inlet from the velocity triangle in m/s
+Cx=967;//Change in whirl velocity from the velocity triangle in m/s
+
+//CALCULATIONS
+U=(3.147*D*N)/60;//Blade velocity in m/s
+C1=U/r;//Steam velocity in m/s
+b2=b1-x;//Blade angle at exit in degrees
+W2=Wr*W1;//Relative velocity at outlet from the velocity triangle in m/s
+W=(m*Cx*U)/1000;//Power developed in kW
+ndia=((2*U*Cx)/(C1^2))*100;//Blade efficiency
+sc=(m*3600)/W;//Steam consumption in kg/kWh
+
+//OUTPUT
+mprintf('Power developed is %3.0f kW \n Blade efficiency is %3.1f percent \n Steam consumed is %3.2f kg/kWh',W,ndia,sc)
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.15/Chapter4_Example15.sce b/1775/CH4/EX4.15/Chapter4_Example15.sce new file mode 100755 index 000000000..595d4258a --- /dev/null +++ b/1775/CH4/EX4.15/Chapter4_Example15.sce @@ -0,0 +1,31 @@ +//Chapter-4, Illustration 15, Page 204
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+m=3;//Mass flow rate of steam in kg/s
+C1=425;//Steam velocity in m/s
+r=0.4;//Ratio of blade speed to jet speed
+W=170;//Stage output in kW
+IL=15;//Internal losses in kW
+a1=16;//Nozzle angle in degrees
+b2=17;//Blade angle at exit in degrees
+W1=265;//Relative velocity at inlet from the velocity triangle in m/s
+W2=130;//Relative velocity at outlet from the velocity triangle in m/s
+
+//CALCULATIONS
+U=C1*r;//Blade speed in m/s
+P=(W+IL)*1000;//Total power developed in W
+Cx=P/(m*W);//Change in whirl velocity in m/s
+ndia=((2*U*Cx)/(C1^2))*100;//Blading efficiency
+Wr=W2/W1;//Blade velocity co-efficient
+
+//OUTPUT
+mprintf('Blading efficiency is %3.1f percent \n Blade velocity co-efficient is %3.2f',ndia,Wr)
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.16/Chapter4_Example16.sce b/1775/CH4/EX4.16/Chapter4_Example16.sce new file mode 100755 index 000000000..c855331b3 --- /dev/null +++ b/1775/CH4/EX4.16/Chapter4_Example16.sce @@ -0,0 +1,29 @@ +//Chapter-4, Illustration 16, Page 205
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+C1=375;//Steam velocity in m/s
+a1=20;//Nozzle angle
+U=165;//Blade speed in m/s
+m=1;//Mass flow rate of steam in kg/s
+Wr=0.85;//Blade friction factor
+Ca1=130;//Axial velocity at inlet from the velocity triangle in m/s
+Ca2=Ca1;//Axial velocity at outlet in m/s
+W1=230;//Relative velocity at inlet from the velocity triangle in m/s
+Cx=320;//Change in whirl velocity from the velocity triangle in m/s
+
+//CALCULATIONS
+b2=41;//Blade angle at exit from the velocity triangle in degrees
+b1=34;//Blade angle at exit from the velocity triangle in degrees
+W=(m*Cx*U)/1000;//Power developed by turbine in kW
+
+//OUTPUT
+mprintf('Blade angles assumed are %3.0f degrees,%3.0f degrees \n Power developed by turbine is %3.1f kW',b1,b2,W)
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.17/Chapter4_Example17.sce b/1775/CH4/EX4.17/Chapter4_Example17.sce new file mode 100755 index 000000000..f095bd555 --- /dev/null +++ b/1775/CH4/EX4.17/Chapter4_Example17.sce @@ -0,0 +1,29 @@ +//Chapter-4, Illustration 17, Page 206
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+m=2;//Mass flow rate of steam in kg/s
+W=130;//Turbine power in kW
+U=175;//Blade velocity in m/s
+C1=400;//Steam velocity in m/s
+Wr=0.9;//Blade friction factor
+W1=240;//Realtive velocity at inlet from the velocity triangle in m/s
+
+//CALCULATIONS
+Cx1=(W*1000)/(m*U);//Whirl velocity at inlet in m/s
+W2=Wr*W1;//Realtive velocity at outlet from the velocity triangle in m/s
+a1=19;//Nozzle angle from the velocity triangle in degrees
+b1=33;//Blade angle at inlet from the velocity triangle in degrees
+b2=36;//Blade angle at outlet from the velocity triangle in degrees
+
+//OUTPUT
+mprintf('Nozzle angle is %3.0f degrees \n Blade angles are %3.0f degrees,%3.0f degrees',a1,b1,b2)
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.18/Chapter4_Example18.sce b/1775/CH4/EX4.18/Chapter4_Example18.sce new file mode 100755 index 000000000..8414b2e2f --- /dev/null +++ b/1775/CH4/EX4.18/Chapter4_Example18.sce @@ -0,0 +1,38 @@ +//Chapter-4, Illustration 18, Page 207
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+U=150;//Blade speed in m/s
+m=3;//Mass flow rate of steam in kg/s
+P=10.5;//Pressure in bar
+r=0.21;//Ratio blade velocity to steam velocity
+a1=16;//Nozzle angle in first stage in degrees
+b2=20;//Blade angle at exit in first stage in degrees
+a3=24;//Nozzle angle in second stage in degrees
+b4=32;//Blade angle at exit in second stage in degrees
+Wr=0.79;//Blade friction factor for first stage
+Wr2=0.88;//Blade friction factor for second stage
+Cr=0.83;//Blade velocity coefficient
+W1=570;//Relative velocity at inlet from the velocity triangle for first stage in m/s
+C2=375;//Velocity in m/s
+W3=185;//Relative velocity at inlet from the velocity triangle for second stage in m/s
+
+//CALCULATIONS
+C1=U/r;//Steam speed at exit in m/s
+W2=Wr*W1;//Relative velocity at outlet for first stage in m/s
+C3=Cr*C2;//Steam velocity at inlet for second stage in m/s
+W4=Wr2*W3;//Relative velocity at exit for second stage in m/s
+DW1=W1+W2;//Change in relative velocity for first stage in m/s
+DW2=275;//Change in relative velocity from the velocity triangle for second stage in m/s
+ndia=((2*U*(DW1+DW2))/(C1^2))*100;//Diagram efficiency
+
+//OUTPUT
+mprintf('Diagram efficiency is %3.1f percent',ndia)
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.19/Chapter4_Example19.sce b/1775/CH4/EX4.19/Chapter4_Example19.sce new file mode 100755 index 000000000..66395ea87 --- /dev/null +++ b/1775/CH4/EX4.19/Chapter4_Example19.sce @@ -0,0 +1,46 @@ +//Chapter-4, Illustration 19, Page 208
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+b1=30;//Blade angle at inlet in first stage in degrees
+b2=30;//Blade angle at exit in first stage in degrees
+b3=30;//Blade angle at inlet in second stage in degrees
+b4=30;//Blade angle at exit in second stage in degrees
+t1=240;//Temperature at entry in oC
+P1=11.5;//Pressure at entry in bar
+P2=5;//Pressure in wheel chamber in bar
+vl=10;//Loss in velocity in percent
+h=155;//Enthalpy at P2 in kJ/kg
+W4=17.3;//Relative velocity at exit from the velocity triangle for second stage in m/s
+a4=90;//Nozzle angle in second stage in degrees
+C3=33;//Steam velocity at inlet from the velocity triangle for second stage in m/s
+W2=49;//Relative velocity at outlet from the velocity triangle for first stage in m/s
+x=15;//Length of AB assumed for drawing velocity triangle in mm
+y=67;//Length of BC from the velocity triangle in mm
+
+//CALCULATIONS
+C1=sqrt(2000*h);//Velocity of steam in m/s
+W3=W4/0.9;//Relative velocity at inlet for second stage in m/s
+C2=C3/0.9;//Velocity in m/s
+W1=W2/0.9;//Relative velocity at inlet for first stage in m/s
+C1n=C1/y;//Velocity of steam in m/s
+U=x*C1n;//Blade speed in m/s
+a3=17;//Nozzle angle in second stage from the velocity triangle in degrees
+a2=43;//Nozzle angle from the velocity triangle in degrees
+DW1=731.5;//Change in relative velocity from the velocity triangle for first stage in m/s
+DW2=257.5;//Change in relative velocity from the velocity triangle for second stage in m/s
+ndia=((2*U*(DW1+DW2))/(C1^2))*100;//Diagram efficiency
+
+//OUTPUT
+mprintf('Blade speed is %3.1f m/s \n Blade tip angles of the fixed blade are %3.0f degrees and %3.0f degrees \n Diagram efficiency is %3.1f percent',U,a3,a2,ndia)
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.2/Chapter4_Example2.sce b/1775/CH4/EX4.2/Chapter4_Example2.sce new file mode 100755 index 000000000..5ab73b906 --- /dev/null +++ b/1775/CH4/EX4.2/Chapter4_Example2.sce @@ -0,0 +1,32 @@ +//Chapter-4, Illustration 2, Page 163
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+T1=273;//Temperature at section 1 in K
+P1=140;//Pressure at section 1 in KN/(m^2)
+v1=900;//Velocity at section 1 in m/s
+v2=300;//Velocity at section 2 in m/s
+Cp=1.006;//Specific heat at constant pressure in kJ/kg-K
+Cv=0.717;//Specific heat at constant volume in kJ/kg-K
+y=1.4;//Ratio of specific heats
+
+//CALCULATIONS
+c=y/(y-1);//Ratio
+R=Cp-Cv;//Universal gas constant in KJ/Kg-K
+T2=T1-(((v2)^2-(v1)^2)/(2000*c*R));//Temperature at section 2 in K
+DT=T2-T1;//Increase in temperature in K
+P2=P1*((T2/T1)^c);//Pressure at section 2 in KN/(m^2)
+DP=(P2-P1)/1000;//Increase in pressure in MN/(m^2)
+IE=Cv*(T2-T1);//Increase in internal energy in kJ/kg
+
+//OUTPUT
+mprintf('Increase in temperature is %3.0f K \n Increase in pressure is %3.2f MN/(m^2) \n Increase in internal energy is %3.0f kJ/kg',DT,DP,IE)
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.20/Chapter4_Example20.sce b/1775/CH4/EX4.20/Chapter4_Example20.sce new file mode 100755 index 000000000..5b045db43 --- /dev/null +++ b/1775/CH4/EX4.20/Chapter4_Example20.sce @@ -0,0 +1,32 @@ +//Chapter-4, Illustration 20, Page 210
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+C1=600;//Steam velocity in m/s
+b1=30;//Blade angle at inlet in first stage in degrees
+b2=30;//Blade angle at exit in first stage in degrees
+b3=30;//Blade angle at inlet in second stage in degrees
+b4=30;//Blade angle at exit in second stage in degrees
+a4=90;//Nozzle angle in second stage in degrees
+m=3;//Mass of steam in kg/s
+x=15;//Length for drawing velocity triangle in mm
+y=56;//Length of BC from the velocity triangle in mm
+
+//CALCUALTIONS
+C1n=C1/y;//Velocity of steam in m/s
+U=x*C1n;//Blade speed in m/s
+l=103;//Length from velocity triangle in mm
+P=(m*l*C1n*U)/1000;//Power developed in kW
+
+//OUTPUT
+mprintf('Blade speed is %3.1f m/s \n Power developed by the turbine is %3.2f kW',U,P)
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.21/Chapter4_Example21.sce b/1775/CH4/EX4.21/Chapter4_Example21.sce new file mode 100755 index 000000000..0f864083f --- /dev/null +++ b/1775/CH4/EX4.21/Chapter4_Example21.sce @@ -0,0 +1,40 @@ +//Chapter-4, Illustration 21, Page 211
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+N=400;//Speed in rpm
+m=8.33;//Mass of steam in kg/s
+P=1.6;//Pressure of steam in bar
+x=0.9;//Dryness fraction
+W=10;//Stage power in kW
+r=0.75;//Ratio of axial flow velocity to blade velocity
+a1=20;//Nozzle angle at inlet in degrees
+a2=35;//Nozzle angle at exit in degrees
+b1=a2;//Blade tip angle at exit in degrees
+b2=a1;//Blade tip angle at inlet in degrees
+a=25;//Length of AB from velocity triangle in mm
+vg=1.091;//Specific volume of steam from steam tables in (m^3)/kg
+
+//CALCULATIONS
+Cx=73.5;//Change in whirl velocity from the velocity triangle by measurement in mm
+y=Cx/a;//Ratio of change in whirl velocity to blade speed
+U=sqrt((W*1000)/(m*y));//Blade speed in m/s
+D=((U*60)/(3.147*N))*1000;//Mean diameter of drum in mm
+v=m*x*vg;//Volume flow rate of steam in (m^3)/s
+
+//OUTPUT
+mprintf('Mean diameter of drum is %3.0f mm \n Volume of steam flowing per second is %3.2f m^3/s',D,v)
+
+
+
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.22/Chapter4_Example22.sce b/1775/CH4/EX4.22/Chapter4_Example22.sce new file mode 100755 index 000000000..1273d8a87 --- /dev/null +++ b/1775/CH4/EX4.22/Chapter4_Example22.sce @@ -0,0 +1,40 @@ +//Chapter-4, Illustration 22, Page 212
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+N=300;//Speed in rpm
+m=4.28;//Mass of steam in kg/s
+P=1.9;//Pressure of steam in bar
+x=0.93;//Dryness fraction
+W=3.5;//Stage power in kW
+r=0.72;//Ratio of axial flow velocity to blade velocity
+a1=20;//Nozzle angle at inlet in degrees
+b2=a1;//Blade tip angle at inlet in degrees
+l=0.08;//Tip leakage steam
+vg=0.929;//Specific volume of steam from steam tables in (m^3)/kg
+
+//CALCULATIONS
+mact=m-(m*l);//Actual mass of steam in kg/s
+a=(3.147*N)/60;//Ratio of blade velocity to mean dia
+b=r*a;//Ratio of axial velocity to mean dia
+c=46;//Ratio of change in whirl velocity to mean dia
+D=sqrt((W*1000)/(mact*c*a));//Mean dia in m
+Ca=b*D;//Axial velocity in m/s
+h=((mact*x*vg)/(3.147*D*Ca))*1000;//Blade height in mm
+D1=D-(h/1000);//Drum dia in m
+
+//OUTPUT
+mprintf('Drum diameter is %3.3f m \n Blade height is %3.0f mm',D1,h)
+
+
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.23/Chapter4_Example23.sce b/1775/CH4/EX4.23/Chapter4_Example23.sce new file mode 100755 index 000000000..bdf5111c7 --- /dev/null +++ b/1775/CH4/EX4.23/Chapter4_Example23.sce @@ -0,0 +1,40 @@ +//Chapter-4, Illustration 23, Page 214
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P0=800;//Steam pressure in kPa
+P2=100;//Pressure at point 2 in kPa
+T0=973;//Steam temperature in K
+a1=73;//Nozzle angle in degrees
+ns=0.9;//Steam efficiency
+m=35;//Mass flow rate in kg/s
+Cp=1.005;//Specific heat at constant pressure in kJ/kg-K
+y=1.4;//Ratio of specific heats
+
+//CALCULATIONS
+b1=atand(tand(a1)/2);//Blade angle at inlet in degrees
+b2=b1;//Blade angle at exit in degrees
+p=2/tand(a1);//Flow coefficient
+s=p*(tand(b1)+tand(b2));//Blade loading coefficient
+Dh=ns*Cp*T0*(1-((P2/P0)^((y-1)/y)));//Difference in enthalpies in kJ/kg
+W=(m*Dh)/1000;//Power developed in MW
+
+//OUTPUT
+mprintf('Rotor blade angles are %3.2f degrees and %3.2f degrees \n Flow coefficient is %3.3f \n Blade loading coefficient is %3.0f \n Power developed is %3.1f MW',b1,b2,p,s,W)
+
+
+
+
+
+
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.24/Chapter4_Example24.sce b/1775/CH4/EX4.24/Chapter4_Example24.sce new file mode 100755 index 000000000..4d9b95590 --- /dev/null +++ b/1775/CH4/EX4.24/Chapter4_Example24.sce @@ -0,0 +1,55 @@ +//Chapter-4, Illustration 24, Page 215
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P0=100;//Steam pressure in bar
+T0=773;//Steam temperature in K
+a1=70;//Nozzle angle in degrees
+ns=0.78;//Steam efficiency
+m=100;//Mass flow rate of steam in kg/s
+D=1;//Turbine diameter in m
+N=3000;//Turbine speed in rpm
+h0=3370;//Steam enthalpy from Moiller chart in kJ/kg
+v2=0.041;//Specific volume at P2 from steam tables in (m^3)/kg
+v4=0.05;//Specific volume at P4 from steam tables in (m^3)/kg
+
+//CALCULATIONS
+U=(3.147*D*N)/60;//Blade speed in m/s
+C1=(2*U)/sind(a1);//Steam speed in m/s
+b1=atand(tand(a1)/2);//Blade angle at inlet for first stage in degrees
+b2=b1;//Blade angle at exit for first stage in degrees
+b3=b1;//Blade angle at inlet for second stage in degrees
+b4=b2;//Blade angle at exit for second stage in degrees
+Wt=(4*m*(U^2))/(10^6);//Total workdone in MW
+Dh=(2*(U^2))/1000;//Difference in enthalpies in kJ/kg
+Dhs=Dh/ns;//Difference in enthalpies in kJ/kg
+h2=h0-Dh;//Enthalpy at point 2 in kJ/kg
+h2s=h0-Dhs;//Enthalpy at point 2s in kJ/kg
+Dh2=(2*(U^2))/1000;//Difference in enthalpies in kJ/kg
+Dh2s=Dh2/ns;//Difference in enthalpies in kJ/kg
+h4=h2-Dh2;//Enthalpy at point 4 in kJ/kg
+h4s=h2-Dh2s;//Enthalpy at point 4s in kJ/kg
+Ca=C1*cosd(a1);//Axial velocity in m/s
+hI=(m*v2)/(3.147*D*Ca);//Blade height at first stage in m/s
+hII=(m*v4)/(3.147*D*Ca);//Blade height at second stage in m/s
+
+//OUTPUT
+mprintf('Rotor blade angles for first stage are %3.2f degrees and %3.2f degrees \n Rotor blade angles for second stage are %3.2f degrees and %3.2f degrees \n Power developed is %3.2f MW \n Final state of steam at first stage is %3.2f kJ/kg \n Final state of steam at second stage is %3.2f kJ/kg \n Blade height at first stage is %3.4f m \n Blade height at second stage is %3.4f m',b1,b2,b3,b4,Wt,h2s,h4s,hI,hII)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.25/Chapter4_Example25.sce b/1775/CH4/EX4.25/Chapter4_Example25.sce new file mode 100755 index 000000000..aa1aeea8d --- /dev/null +++ b/1775/CH4/EX4.25/Chapter4_Example25.sce @@ -0,0 +1,50 @@ +//Chapter-4, Illustration 25, Page 218
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P0=100;//Steam pressure in bar
+T0=773;//Steam temperature in K
+a1=70;//Nozzle angle in degrees
+ns=0.78;//Steam efficiency
+m=100;//Mass flow rate of steam in kg/s
+D=1;//Turbine diameter in m
+N=3000;//Turbine speed in rpm
+h0=3370;//Steam enthalpy from Moiller chart in kJ/kg
+P4=27;//Pressure at point 4 in bar
+T4=638;//Temperature at point 4 in K
+v4=0.105;//Specific volume at P4 from mollier chart in (m^3)/kg
+ns=0.65;//Stages efficiency
+
+//CALCULATIONS
+U=(3.147*D*N)/60;//Blade speed in m/s
+C1=(4*U)/sind(a1);//Steam speed in m/s
+Ca=C1*cosd(a1);//Axial velocity in m/s
+b1=atand((3*U)/Ca);//Blade angle at inlet for first stage in degrees
+b2=b1;//Blade angle at exit for first stage in degrees
+b4=atand(U/Ca);//Blade angle at exit for second stage in degrees
+b3=b4;//Blade angle at inlet for second stage in degrees
+WI=m*6*(U^2);//Power developed in first stage in MW
+WII=m*2*(U^2);//Power developed in second stage in MW
+W=(WI+WII)/(10^6);//Total power developed in MW
+Dh=(W*1000)/100;//Difference in enthalpies in kJ/kg
+Dhs=(W*1000)/(ns*100);//Difference in enthalpies in kJ/kg
+h4=h0-Dh;//Enthalpy at point 4 in kJ/kg
+h4s=h0-Dhs;//Enthalpy at point 4s in kJ/kg
+h=(m*v4)/(3.147*D*Ca);//Rotor blade height in m
+
+//OUTPUT
+mprintf('Rotor blade angles for first stage are %3.2f degrees and %3.2f degrees \n Rotor blade angles for second stage are %3.2f degrees and %3.2f degrees \n Power developed is %3.2f MW \n Final state of steam at first stage is %3.1f kJ/kg \n Final state of steam at second stage is %3.2f kJ/kg \n Rotor blade height is %3.4f m',b1,b2,b3,b4,W,h4,h4s,h)
+
+
+
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.26/Chapter4_Example26.sce b/1775/CH4/EX4.26/Chapter4_Example26.sce new file mode 100755 index 000000000..c1cc4c14a --- /dev/null +++ b/1775/CH4/EX4.26/Chapter4_Example26.sce @@ -0,0 +1,30 @@ +//Chapter-4, Illustration 26, Page 221
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+a1=30;//Nozzle angle in degrees
+Ca=180;//Axial velocity in m/s
+U=280;//Rotor blade speed in m/s
+R=0.5;//Degree of reaction
+
+//CALCULATIONS
+a1n=90-a1;//Nozzle angle measured from axial direction in degrees
+Cx1=Ca*tand(a1n);//Whirl velocity in m/s
+b1=atand((Cx1-U)/Ca);//Blade angle at inlet in degrees
+b2=a1n;//Blade angle at exit in degrees
+
+//OUTPUT
+mprintf('Blade angle at inlet is %3.0f degrees \n Blade angle at exit is %3.0f degrees',b1,b2)
+
+
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.27/Chapter4_Example27.sce b/1775/CH4/EX4.27/Chapter4_Example27.sce new file mode 100755 index 000000000..74e60abcf --- /dev/null +++ b/1775/CH4/EX4.27/Chapter4_Example27.sce @@ -0,0 +1,35 @@ +//Chapter-4, Illustration 27, Page 222
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P0=800;//Steam pressure in kPa
+T0=900;//Steam temperature in K
+a1=70;//Nozzle angle in degrees
+ns=0.85;//Steam efficiency
+m=75;//Mass flow rate of steam in kg/s
+R=0.5;//Degree of reaction
+U=160;//Blade speed in m/s
+
+//CALCULATIONS
+C1=U/sind(a1);//Steam speed in m/s
+Ca=C1*cosd(a1);//Axial velocity in m/s
+b1=0;//Blade angle at inlet from velocity triangle in degrees
+b2=a1;//Blade angle at exit in degrees
+a2=b1;//Nozzle angle in degrees
+W=(m*(U^2))/(10^6);//Power developed in MW
+Dhs=(W*1000)/(ns*m);//Isentropic enthalpy drop in kJ/kg
+
+//OUTPUT
+mprintf('Rotor blade angles are %3.0f degrees and %3.0f degrees \n Power developed is %3.2f MW \n Isentropic enthalpy drop is %3.2f kJ/kg',b1,b2,W,Dhs)
+
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.3/Chapter4_Example3.sce b/1775/CH4/EX4.3/Chapter4_Example3.sce new file mode 100755 index 000000000..9a0731536 --- /dev/null +++ b/1775/CH4/EX4.3/Chapter4_Example3.sce @@ -0,0 +1,34 @@ +//Chapter-4, Illustration 3, Page 163
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P1=2;//Pressure at entry in MN/(m^2)
+T1=598;//Temperature at entry in K
+P2=0.36;//Pressure at exit in MN/(m^2)
+m=7.5;//mass flow rate of steam in kg/s
+n=1.3;//Adiabatic gas constant
+v1=0.132;//Volume at entry in (m^3)/kg from steam table
+Ts=412.9;//Saturation temperature in K
+
+//CALCULATIONS
+c=n/(n-1);//Ratio
+Pt=((2/(n+1))^c)*P1;//Throat pressure in MN/(m^2)
+Ct=((2*c*P1*v1*(1-((Pt/P1)^(1/c))))^0.5)*1000;//Velocity at throat in m/s
+vt=v1*((P1/Pt)^(1/n));//Specific volume at throat in (m^3)/kg
+At=((m*vt)/Ct)*(10^6);//Area of throat in (mm^2)
+C2=((2*c*P1*v1*(1-((P2/P1)^(1/c))))^0.5)*1000;//Velocity at exit in m/s
+v2=v1*((P1/P2)^(1/n));//Specific volume at exit in (m^3)/kg
+A2=((m*v2)/C2)*(10^6);//Area of exit in (mm^2)
+T2=T1*((P2/P1)^(1/c));//Temperature at exit in K
+D=Ts-T2;//Degree of undercooling at exit in K
+
+//OUTPUT
+mprintf('Throat area is %3.0f (mm^2) \n Exit area is %3.0f (mm^2) \n Degree of undercooling at exit is %3.1f K',At,A2,D)
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.4/Chapter4_Example4.sce b/1775/CH4/EX4.4/Chapter4_Example4.sce new file mode 100755 index 000000000..a0ca9dec8 --- /dev/null +++ b/1775/CH4/EX4.4/Chapter4_Example4.sce @@ -0,0 +1,32 @@ +//Chapter-4, Illustration 4, Page 165
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P1=2.2;//Pressure at entry in MN/(m^2)
+T1=533;//Temperature at entry in K
+P2=0.4;//Pressure at exit in MN/(m^2)
+m=11;//mass flow rate of steam in kg/s
+n=0.85;//Efficiency of expansion
+h1=2940;//Enthalpy at entrance in kJ/kg from Moiller chart
+ht=2790;//Enthalpy at throat in kJ/kg from Moiller chart
+h2s=2590;//Enthalpy below exit level in kJ/kg from Moiller chart
+vt=0.16;//Throat volume in (m^3)/kg
+v2=0.44;//Volume at exit in (m^3)/kg
+
+//CALCULATIONS
+Ct=(2000*(h1-ht))^0.5;//Throat velocity in m/s
+h2=ht-(0.85*(ht-h2s));//Enthalpy at exit in kJ/kg
+C2=(2000*(h1-h2))^0.5;//Exit velocity in m/s
+At=((m*vt)/Ct)*(10^6);//Area of throat in (mm^2)
+A2=((m*v2)/C2)*(10^6);//Area of exit in (mm^2)
+
+//OUTPUT
+mprintf('Throat velocity is %3.0f m/s \n Exit velocity is %3.0f m/s \n Throat area is %3.0f (mm^2) \n Exit area is %3.0f (mm^2) \n',Ct,C2,At,A2)
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.5/Chapter4_Example5.sce b/1775/CH4/EX4.5/Chapter4_Example5.sce new file mode 100755 index 000000000..c79974e5e --- /dev/null +++ b/1775/CH4/EX4.5/Chapter4_Example5.sce @@ -0,0 +1,45 @@ +//Chapter-4, Illustration 5, Page 166
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P1=35;//Pressure at entry in bar
+T1=573;//Temperature at entry in K
+P2=8;//Pressure at exit in bar
+Ts=443.4;//Saturation temperature in K
+Ps=3.1;//Saturation pressure in bar
+m=5.2;//mass flow rate of steam in kg/s
+n=1.3;//Adiabatic gas constant
+v1=0.06842;//Specific volume at entry in (m^3)/kg from steam table
+v3=0.2292;//Specific volume at exit in (m^3)/kg from steam table
+h1=2979;//Enthalpy in kJ/kg from Moiller chart
+h3=2673.3;//Enthalpy in kJ/kg from Moiller chart
+
+//CALCULATIONS
+c=n/(n-1);//Ratio
+C2=((2*c*P1*(10^5)*v1*(1-((P2/P1)^(1/c))))^0.5);//Velocity at exit in m/s
+v2=v1*((P1/P2)^(1/n));//Specific volume at exit in (m^3)/kg
+A2=((m*v2)/C2)*(10^4);//Area of exit in (cm^2)
+a=((A2/18)^0.5)*10;//Length in mm
+b=3*a;//Breadth in mm
+T2=T1*((P2/P1)^(1/c));//Temperature at exit in K
+D=Ts-T2;//Degree of undercooling in K
+Ds=P2/Ps;//Degree of supersaturation
+hI=h1-h3;//Isentropic enthalpy drop in kJ/kg
+ha=(C2^2)/2000;//Actual enthalpy drop in kJ/kg
+QL=hI-ha;//Loss in available heat in kJ/kg
+DS=QL/Ts;//Increase in entropy in kJ/kg-K
+C3=(2000*(h1-h3))^0.5;//Exit velocity from nozzle
+mf=((A2*C3*(10^-4))/v3);//Mass flow rate in kg/s
+Rm=m/mf;//Ratio of mass rate
+
+//OUTPUT
+mprintf('Cross section of nozzle is %3.1f mm * %3.1f mm \n Degree of undercooling is %3.1f K and Degree of supersaturation is %3.2f \n Loss in available heat drop due to irreversibility is %3.2f kJ/kg \n Increase in entropy is %3.5f kJ/kg-K \n Ratio of mass flow rate with metastable expansion to the thermal expansion is %3.3f',b,a,D,Ds,QL,DS,Rm)
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.6/Chapter4_Example6.sce b/1775/CH4/EX4.6/Chapter4_Example6.sce new file mode 100755 index 000000000..1182c53be --- /dev/null +++ b/1775/CH4/EX4.6/Chapter4_Example6.sce @@ -0,0 +1,32 @@ +//Chapter-4, Illustration 6, Page 169
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+m=14;//Mass flow rate of steam in kg/s
+P1=3;//Pressure of Steam in MN/(m^2)
+T1=300;//Steam temperature in oC
+h1=2990;//Enthalpy at point 1 in kJ/kg
+h2s=2630;//Enthalpy at point 2s in kJ/kg
+ht=2850;//Enthalpy at point t in kJ/kg
+n=1.3;//Adiabatic gas constant
+C2=800;//Exit velocity in m/s
+v2=0.4;//Specific volume at exit in (m^3)/kg
+
+//CALCULATIONS
+x=n/(n-1);//Ratio
+Pt=((2/(n+1))^x)*P1;//Temperature at point t in MN/(m^2)
+h2=h1-((C2^2)/2000);//Exit enthalpy in kJ/kg
+nN=((h1-h2)/(h1-h2s))*100;//Nozzle efficiency
+A2=((m*v2)/C2)*(10^6);//Exit area in (mm^2)
+Ct=sqrt(2000*(h1-ht));//Throat velocity in m/s
+
+//OUTPUT
+mprintf('Nozzle efficiency is %3.1f percent \n Exit area is %3.0f (mm^2) \n Throat velocity is %3.0f m/s',nN,A2,Ct)
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.7/Chapter4_Example7.sce b/1775/CH4/EX4.7/Chapter4_Example7.sce new file mode 100755 index 000000000..22c03f53c --- /dev/null +++ b/1775/CH4/EX4.7/Chapter4_Example7.sce @@ -0,0 +1,40 @@ +//Chapter-4, Illustration 7, Page 170
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P1=10;//Pressure at point 1 in bar
+P2=0.5;//Pressure at point 2 in bar
+h1=3050;//Enthalpy at point 1 in kJ/kg
+h2s=2480;//Enthalpy at point 2s in kJ/kg
+ht=2910;//Enthalpy at throat in kJ/kg
+n=1.3;//Adiabatic gas constant
+r=0.1;//Total available heat drop
+v1=0.258;//Specific volume at point 1 in (m^3)/kg
+h2f=340.6;//Enthalpy for exit pressure from steam tables in kJ/kg
+hfg=2305.4;//Enthalpy for exit pressure from steam tables in kJ/kg
+m=0.5;//Mass flow rate in kg/s
+
+//CALCULATIONS
+x=n/(n-1);//Ratio
+Pt=((2/(n+1))^x)*P1;//Temperature at throat in bar
+h2=h2s+(r*(h1-h2s));//Enthalpy at point 2 in kJ/kg
+vt=((P1/Pt)^(1/n))*v1;//Specific volume at throat in (m^3)/kg
+v2=((P1/P2)^(1/n))*v1;//Specific volume at point 2 in (m^3)/kg
+Ct=sqrt(2000*(h1-ht));//Throat velocity in m/s
+At=((m*vt)/Ct)*(10^6);//Throat area in (mm^2)
+C2=sqrt(2000*(h1-h2));//Exit velocity in m/s
+A2=((m*v2)/C2)*(10^6);//Exit area in (mm^2)
+x2=((h2-h2f)/hfg)*100;//Steam quality at exit
+
+//OUTPUT
+mprintf('Throat area is %3.0f (mm^2) \n Exit area is %3.0f (mm^2) \n Steam quality at exit is %3.0f percent',At,A2,x2)
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.8/Chapter4_Example8.sce b/1775/CH4/EX4.8/Chapter4_Example8.sce new file mode 100755 index 000000000..d57cbf248 --- /dev/null +++ b/1775/CH4/EX4.8/Chapter4_Example8.sce @@ -0,0 +1,33 @@ +//Chapter-4, Illustration 8, Page 171
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P1=3.5;//Dry saturated steam in bar
+P2=1.1;//Exit pressure in bar
+At=4.4;//Throat area in cm^2
+h1=2731.6;//Enthalpy at P1 in kJ/kg
+v1=0.52397;//Specific volume at P1 in m^3/kg
+n=1.135;//Adiabatic gas constant
+ht=2640;//Enthalpy at Pt in kJ/kg
+vt=0.85;//Specific volume at throat in m^3/kg
+h2=2520;//Enthalpy at P2 in kJ/kg
+v2=1.45;//Specific volume at P2 in m^3/kg
+
+//CALCULATIONS
+x=n/(n-1);//Ratio
+Pt=((2/(n+1))^x)*P1;//Throat pressure in bar
+Ct=sqrt(2000*(h1-ht));//Throat velocity in m/s
+mmax=((At*Ct*(10^-4))/vt)*60;//Maximum discharge in kg/min
+C2=sqrt(2000*(h1-h2));//Exit velocity in m/s
+A2=((mmax*v2)/(C2*60))*(10^6);//Exit area in mm^2
+
+//OUTPUT
+mprintf('Maximum discharge is %3.3f kg/min \n Exit area is %3.2f mm^2',mmax,A2)
+
+
+
+
+//==============================END OF PROGRAM=================================
diff --git a/1775/CH4/EX4.9/Chapter4_Example9.sce b/1775/CH4/EX4.9/Chapter4_Example9.sce new file mode 100755 index 000000000..6cf39451e --- /dev/null +++ b/1775/CH4/EX4.9/Chapter4_Example9.sce @@ -0,0 +1,30 @@ +//Chapter-4, Illustration 9, Page 172
+//Title: Steam Nozzles and Steam Turbines
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+P1=10;//Pressure at point 1 in bar
+T1=200;//Temperature at point 1 in oC
+P2=5;//Pressure at point 2 in bar
+n=1.3;//Adiabatic gas constant
+h1=2830;//Enthalpy at P1 in kJ/kg
+ht=2710;//Enthalpy at point Pt in kJ/kg
+vt=0.35;//Specific volume at Pt in m^3/kg
+m=3;//Nozzle flow in kg/s
+
+//CALCULATIONS
+x=n/(n-1);//Ratio
+Pt=((2/(n+1))^x)*P1;//Throat pressure in bar
+Ct=sqrt(2000*(h1-ht));//Throat velocity in m/s
+At=(m*vt)/Ct;//Throat area in m^2
+
+//OUTPUT
+mprintf('Since throat pressure is greater than exit pressure,nozzle used is convergent-divergent nozzle \n Minimum area of nozzle required is %3.5f m^2',At)
+
+
+
+
+
+//==============================END OF PROGRAM=================================
|