summaryrefslogtreecommitdiff
path: root/1664/CH4
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1664/CH4
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1664/CH4')
-rwxr-xr-x1664/CH4/EX4.1/Ex4_1.sce12
-rwxr-xr-x1664/CH4/EX4.10/Ex4_10.sce11
-rwxr-xr-x1664/CH4/EX4.11/Ex4_11.sce14
-rwxr-xr-x1664/CH4/EX4.12/Ex4_12.sce15
-rwxr-xr-x1664/CH4/EX4.13/Ex4_13.sce31
-rwxr-xr-x1664/CH4/EX4.14/Ex4_14.sce11
-rwxr-xr-x1664/CH4/EX4.15/Ex4_15.sce21
-rwxr-xr-x1664/CH4/EX4.2/Ex4_2.sce23
-rwxr-xr-x1664/CH4/EX4.3/Ex4_3.sce17
-rwxr-xr-x1664/CH4/EX4.4/Ex4_4.sce17
-rwxr-xr-x1664/CH4/EX4.5/Ex4_5.sce18
-rwxr-xr-x1664/CH4/EX4.6/Ex4_6.sce9
-rwxr-xr-x1664/CH4/EX4.7/Ex4_7.sce12
-rwxr-xr-x1664/CH4/EX4.8/Ex4_8.sce11
-rwxr-xr-x1664/CH4/EX4.9/Ex4_9.sce12
15 files changed, 234 insertions, 0 deletions
diff --git a/1664/CH4/EX4.1/Ex4_1.sce b/1664/CH4/EX4.1/Ex4_1.sce
new file mode 100755
index 000000000..53e6e9aae
--- /dev/null
+++ b/1664/CH4/EX4.1/Ex4_1.sce
@@ -0,0 +1,12 @@
+
+
+//Example No 133.
+//Page No 4.1.
+//To find change in wavelength.
+clc;clear;
+h = 6.63*10^(-34);//Planck's constant -[J-s].
+m0 = 9.1*10^(-31);//mass of electron -[kg].
+c = 3*10^(8);//Velocity of ligth -[m/s].
+cosq = cosd(135);//Angle of scattering -[degree].
+delW = (h/(m0*c))*(1-cosq);//change in wavelength.
+printf("\nThe change in wavelength is %3.3e m",delW);
diff --git a/1664/CH4/EX4.10/Ex4_10.sce b/1664/CH4/EX4.10/Ex4_10.sce
new file mode 100755
index 000000000..998440c83
--- /dev/null
+++ b/1664/CH4/EX4.10/Ex4_10.sce
@@ -0,0 +1,11 @@
+
+
+//Example No.4.10
+// Page No.138.
+//To find the probability.
+clc;clear;
+L = 25*10^(-10);//Width of the potential well -[m].
+delx = 0.05*10^(-10);//Interval -[m].
+x = int(1);
+P = (((2*delx)/L)*x);//'P' is the probability of finding the practicle at an interval of 0.05 .
+printf("\nThe probability of finding the particle is %.3f",P);
diff --git a/1664/CH4/EX4.11/Ex4_11.sce b/1664/CH4/EX4.11/Ex4_11.sce
new file mode 100755
index 000000000..14ac4071b
--- /dev/null
+++ b/1664/CH4/EX4.11/Ex4_11.sce
@@ -0,0 +1,14 @@
+
+//Example No.4.11.
+//Page No.138.
+clc;clear;
+n = 1;//For the lowest energy value n=1.
+h = 6.626*10^(-34);//Planck's constant.
+L = 1*10^(-10);//Width of the potential well -[m].
+m = 9.1*10^(-31);//Mass of the electron.
+E = ((n^(2)*h^(2))/(8*m*L^(2)));
+E = ((h^(2))/(8*m*L^(2)));// For the lowest energy value n=1.
+printf("\nThe lowest energy of the electron in joules is %3.3e J",E);;// Lowest energy of the electron in joules.
+E = (E/(1.6*10^(-19)));
+printf("\nThe lowest energy of the electron in eV is %.2f eV",E);// Lowest energy of the electron in eV.
+
diff --git a/1664/CH4/EX4.12/Ex4_12.sce b/1664/CH4/EX4.12/Ex4_12.sce
new file mode 100755
index 000000000..85253ac74
--- /dev/null
+++ b/1664/CH4/EX4.12/Ex4_12.sce
@@ -0,0 +1,15 @@
+
+
+//Example No.4.12.
+//Page No.139.
+//To find lowest energy of the electron.
+clc;clear;
+n = 1;//For the lowest energy value n=1.
+h = 6.626*10^(-34);//Planck's constant.
+L = 1*10^(-10);//Width of the potential well -[m].
+m = 9.1*10^(-31);//Mass of the electron.
+E = (2*(n^(2)*h^(2))/(8*m*L^(2)));
+//'E' is the Lowest energy of the system.
+printf("\nThe lowest energy of the system in joules is %3.3e J",E);
+E = (E/(1.6*10^(-19)));
+printf("\nThe lowest energy of the system in eV is %.2f eV",E);// Lowest energy of the electron in eV.
diff --git a/1664/CH4/EX4.13/Ex4_13.sce b/1664/CH4/EX4.13/Ex4_13.sce
new file mode 100755
index 000000000..2d4f1c624
--- /dev/null
+++ b/1664/CH4/EX4.13/Ex4_13.sce
@@ -0,0 +1,31 @@
+
+
+//Example No.4.13.
+//Page No.139.
+clc;clear;
+h = 6.626*10^(-34);//Planck's constant.
+L = 1*10^(-10);//Width of the potential well -[m].
+m = 9.1*10^(-31);//Mass of the electron.
+E = ((6*h^(2))/(8*m*L^(2)));
+printf("\n 1) The lowest energy of the system in joules is %3.3e eV",E);
+E = (E/(1.6*10^(-19)));
+printf("\n 2) The lowest energy of the system is %.2f eV",E);
+disp('3) Quantum numbers are,');
+n = 1;
+l = 0;
+ml = 0;
+ms = 0.5;
+ms1 = -0.5;
+printf("\ni)n = %.0f",n);
+printf(" , l = %.0f",l);
+printf(" , ml = %.0f",ml);
+printf(" , ms = %.1f",ms);
+printf("\nii)n = %.0f",n);
+printf(" , l = %.0f",l);
+printf(" , ml = %.0f",ml);
+printf(" , ms1 = %.1f",ms1);
+n=2;
+printf("\niii)n = %.0f",n);
+printf(" , l = %.0f",l);
+printf(" , ml = %.0f",ml);
+printf(" , ms = %.1f",ms);
diff --git a/1664/CH4/EX4.14/Ex4_14.sce b/1664/CH4/EX4.14/Ex4_14.sce
new file mode 100755
index 000000000..9c76d97e8
--- /dev/null
+++ b/1664/CH4/EX4.14/Ex4_14.sce
@@ -0,0 +1,11 @@
+
+
+//Example No.4.14.
+//Page No.140.
+//The mass of the particle.
+clc;clear;
+E = 0.025*1.6*10^(-19);//Lowest energy.
+h = 6.626*10^(-34);//Planck's constant.
+L = 100*10^(-10);//Width of the well -[m].
+m = ((h^(2))/(8*E*L^(2)));
+printf("\nThe mass of the particle is %3.3e kg",m);
diff --git a/1664/CH4/EX4.15/Ex4_15.sce b/1664/CH4/EX4.15/Ex4_15.sce
new file mode 100755
index 000000000..ca6a0230c
--- /dev/null
+++ b/1664/CH4/EX4.15/Ex4_15.sce
@@ -0,0 +1,21 @@
+
+
+//Example No.4.15.
+//Page No.141.
+//To find energy density.
+clc;clear;
+T = 6000;//Temperature -[K].
+k = 1.38*10^(-23);//Boltzman's constant.
+w1 = 450*10^(-9);//wavelength -[m].
+w2 = 460*10^(-9);//wavelength -[m].
+c = 3*10^(8);//Velcity of light.
+v1=(c/w1);
+printf("\nThe velocity for wavelength 450 nm is %3.3e Hz",v1);
+v2 = (c/w2);
+printf("\nThe velocity for wavelength 460 nm is %3.3e Hz",v2);
+v = ((v1+v2)/2);
+printf("\nThe average value of v is %3.3e Hz",v);
+h = 6.626*10^(-34);//Planck's constant.
+d = (8*%pi*h*v^(3))/(c^(3));
+dv = d*(1/(exp((h*v)/(k*T))-1));//Energy density.
+printf("\nThe energy density of the black body is %3.3e J/m^3",dv);
diff --git a/1664/CH4/EX4.2/Ex4_2.sce b/1664/CH4/EX4.2/Ex4_2.sce
new file mode 100755
index 000000000..ea3fb6c91
--- /dev/null
+++ b/1664/CH4/EX4.2/Ex4_2.sce
@@ -0,0 +1,23 @@
+
+
+//Example No.4.2.
+//Page No.134.
+clc;clear;
+h = 6.626*10^(-34);//Planck's constant.
+m0 = 9.1*10^(-31);//mass of electron.
+c = 3*10^(8);//Velocity of ligth.
+cosq = cosd(90);//Scattering angle -[degree].
+delW = (h/(m0*c))*(1-cosq);//Compton's shift
+delW = delW*10^(10);
+printf("\na)The Comptons shift is %.5f A",delW);
+w = 2;//Wavelength -[A]
+W = (delW+w);// Wavelength of the scattered photon.
+printf("\nb)The wavelength of the scattered photon is % 5f A",W);
+E = (h*c)*((1/(w*10^(-10)))-(1/(W*10^(-10))));//Energy of the recoiling electron in joules.
+printf("\nc)The energy of the recoiling electron in joules is %3.3e J",E);
+E = (E/(1.6*10^(-19)));//Energy of the recoiling electron in eV.
+printf("\nc)The energy of the recoiling electron in eV is %3.3e eV",E);
+sinq = sind(90);
+Q = (((h*c)/w)*sinq)/(((h*c)/w)-((h*c)/W)*cosq);
+theta = atand(Q);
+printf("\ne)The angle at which the recoiling electron appears is %.0f degree",theta);
diff --git a/1664/CH4/EX4.3/Ex4_3.sce b/1664/CH4/EX4.3/Ex4_3.sce
new file mode 100755
index 000000000..0b6e998d4
--- /dev/null
+++ b/1664/CH4/EX4.3/Ex4_3.sce
@@ -0,0 +1,17 @@
+
+
+//Example No.4.3.
+//Page NO.135.
+clc;clear;
+h = 6.626*10^(-34);//Planck's constant.
+mo = 9.1*10^(-31);//mass of electron.
+c = 3*10^(8);//Velocity of ligth.
+w = (1*1.6*10^(-19)*10^(6));//wavelength.
+cosq = cosd(60);
+delw = ((h/(mo*c))*(1-cosq));//Compton shift
+delw = delw*10^(10);
+printf("\n1)The Comptons shift = %.3f A",delw);
+E = ((h*c)/w);//energy of the incident photon.
+W = (delw+E);//Wavelength of the scattered photon.
+W = (0.012)+(1.242);
+printf("\n3)The wavelength of the scattered photon = %.3f A",W);
diff --git a/1664/CH4/EX4.4/Ex4_4.sce b/1664/CH4/EX4.4/Ex4_4.sce
new file mode 100755
index 000000000..fa1b6cc19
--- /dev/null
+++ b/1664/CH4/EX4.4/Ex4_4.sce
@@ -0,0 +1,17 @@
+
+
+//Example No 135.
+//Page No 4.4.
+//To find number of photons.
+clc;clear;
+h = 6.63*10^(-34);//Planck's constant.
+c = 3*10^(8);//Velocity of ligth.
+w = 5893*10^(-10);//wavelength.
+Op = 60;//output power -[W].
+E =((h*c)/w);
+printf("\nEnergy of photon in joules is %3.3e J",E);//Energy of photon in joules.
+hv = (E/(1.6*10^(-19)));//Energy of photon in eV.
+printf("\nEnergy of photon in eV is %.3f eV",hv);
+Ps = ((Op)/(E));
+Ps = ((60)/(E));// Number of photons emitted per second.
+printf("\nThe number of photons emitted per second is %3.3e photons per second",Ps);
diff --git a/1664/CH4/EX4.5/Ex4_5.sce b/1664/CH4/EX4.5/Ex4_5.sce
new file mode 100755
index 000000000..95aa1823a
--- /dev/null
+++ b/1664/CH4/EX4.5/Ex4_5.sce
@@ -0,0 +1,18 @@
+
+
+//Example No 136.
+//Page No 4.5.
+//To find mass,momentum & energy of photon.
+clc;clear;
+h = 6.63*10^(-34);//Planck's constant.
+c = 3*10^(8);//Velocity of ligth.
+w = 10*10^(-10);//wavelength.
+E = ((h*c)/w);//Energy.
+printf("\n1)The energy of photon in joules is %3.3e J",E);
+E = E/(1.6*10^(-19)*10^(3));
+printf("\n2)The energy of photon in eV is %.3f Kev",E);
+p = (h/w);//Momentum.
+p = ((6.63*10^(-34))/(10*10^(-10)));
+printf("\n3)The momentum of the photon is %3.3e kg.m/s",p)
+m = (h/(w*c));
+printf("\n4)The mass of the photon is %3.3e kg",m);
diff --git a/1664/CH4/EX4.6/Ex4_6.sce b/1664/CH4/EX4.6/Ex4_6.sce
new file mode 100755
index 000000000..d95eb9e20
--- /dev/null
+++ b/1664/CH4/EX4.6/Ex4_6.sce
@@ -0,0 +1,9 @@
+
+
+//Example No 136.
+//Page No 4.6.
+//To find de-Broglie wavelength.
+clc;clear;
+V=1.25*10^(3);//Potential difference applied -[V].
+w=((12.27)/sqroot(V));//de-Broglie wavelength of electron.
+printf("\nThe de-Broglie wavelength of electron is %.3f A",w);
diff --git a/1664/CH4/EX4.7/Ex4_7.sce b/1664/CH4/EX4.7/Ex4_7.sce
new file mode 100755
index 000000000..5fb97bd66
--- /dev/null
+++ b/1664/CH4/EX4.7/Ex4_7.sce
@@ -0,0 +1,12 @@
+
+
+//Example No.136 .
+//Page No. 4.7.
+//To find de-Broglie wavelength.
+clc;clear;
+E = 45*1.6*10^(-19);//Energy of the electron.
+h = 6.63*10^(-34);//Planck's constant
+m = 9.1*10^(-31);//Mass of the electron.
+w = h/(sqrt(2*m*E));//de-Broglie wavelength.
+printf("\nThe de-Broglie wavelength of the photon is %3.3e m",w);
+
diff --git a/1664/CH4/EX4.8/Ex4_8.sce b/1664/CH4/EX4.8/Ex4_8.sce
new file mode 100755
index 000000000..4c392fe6e
--- /dev/null
+++ b/1664/CH4/EX4.8/Ex4_8.sce
@@ -0,0 +1,11 @@
+
+
+//Example No.4.8.
+//Page No.137.
+//To find de-Broglie wavelength.
+clc;clear;
+h=6.626*10^(-34);//Planck's constant.
+v=10^(7);//Velocity of the electron -[m/s].
+m=9.1*10^(-31);//Mass of the electron.
+w=(h/(m*v));//de-Broglie wavelength
+printf("\nThe de-Broglie wavelength is %3.3e m",w);
diff --git a/1664/CH4/EX4.9/Ex4_9.sce b/1664/CH4/EX4.9/Ex4_9.sce
new file mode 100755
index 000000000..31e1a9573
--- /dev/null
+++ b/1664/CH4/EX4.9/Ex4_9.sce
@@ -0,0 +1,12 @@
+
+
+//Example No 137.
+//Page No 4.9.
+//The de-Broglie wavelength of alpha particle.
+clc;clear;
+V = 1000;//Potential difference applied -[V].
+h = (6.626*10^(-34));//Planck's constant -[J-s].
+m = (1.67*10^(-27));//Mass of a proton -[kg].
+e = (1.6*10^(-19));//charge of electron -[J].
+w = h/sqrt(2*m*e*V);//de-Broglie wavelength
+printf("\nThe de-Broglie wavelength of alpha particle = %3.3e m",w);