summaryrefslogtreecommitdiff
path: root/1664
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1664
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1664')
-rwxr-xr-x1664/CH1/EX1.1/Ex1_1.sce12
-rwxr-xr-x1664/CH1/EX1.2/Ex1_2.sce14
-rwxr-xr-x1664/CH1/EX1.3/Ex1_3.sce13
-rwxr-xr-x1664/CH1/EX1.4/Ex1_4.sce10
-rwxr-xr-x1664/CH1/EX1.5/Ex1_5.sce8
-rwxr-xr-x1664/CH10/EX10.1/Ex10_1.sce12
-rwxr-xr-x1664/CH10/EX10.2/Ex10_2.sce16
-rwxr-xr-x1664/CH10/EX10.3/Ex10_3.sce12
-rwxr-xr-x1664/CH10/EX10.4/Ex10_4.sce9
-rwxr-xr-x1664/CH10/EX10.5/Ex10_5.sce11
-rwxr-xr-x1664/CH10/EX10.6/Ex10_6.sce11
-rwxr-xr-x1664/CH11/EX11.1/Ex11_1.sce11
-rwxr-xr-x1664/CH11/EX11.2/Ex11_2.sce12
-rwxr-xr-x1664/CH11/EX11.3/Ex11_3.sce10
-rwxr-xr-x1664/CH11/EX11.4/Ex11_4.sce9
-rwxr-xr-x1664/CH11/EX11.5/Ex11_5.sce10
-rwxr-xr-x1664/CH11/EX11.6/Ex11_6.sce11
-rwxr-xr-x1664/CH11/EX11.7/Ex11_7.sce9
-rwxr-xr-x1664/CH12/EX12.1/Ex12_1.sce10
-rwxr-xr-x1664/CH12/EX12.2/Ex12_2.sce12
-rwxr-xr-x1664/CH12/EX12.3/Ex12_3.sce10
-rwxr-xr-x1664/CH12/EX12.4/Ex12_4.sce17
-rwxr-xr-x1664/CH12/EX12.5/Ex12_5.sce11
-rwxr-xr-x1664/CH12/EX12.6/Ex12_6.sce12
-rwxr-xr-x1664/CH2/EX2.1/Ex2_1.sce15
-rwxr-xr-x1664/CH2/EX2.10/Ex2_10.sce15
-rwxr-xr-x1664/CH2/EX2.2/Ex2_2.sce11
-rwxr-xr-x1664/CH2/EX2.3/Ex2_3.sce16
-rwxr-xr-x1664/CH2/EX2.4/Ex2_4.sce13
-rwxr-xr-x1664/CH2/EX2.5/Ex2_5.sce9
-rwxr-xr-x1664/CH2/EX2.6/Ex2_6.sce12
-rwxr-xr-x1664/CH2/EX2.7/Ex2_7.sce11
-rwxr-xr-x1664/CH2/EX2.8/Ex2_8.sce10
-rwxr-xr-x1664/CH2/EX2.9/Ex2_9.sce9
-rwxr-xr-x1664/CH3/EX3.1/Ex3_1.sce9
-rwxr-xr-x1664/CH3/EX3.2/Ex3_2.sce12
-rwxr-xr-x1664/CH3/EX3.3/Ex3_3.sce9
-rwxr-xr-x1664/CH3/EX3.4/Ex3_4.sce14
-rwxr-xr-x1664/CH3/EX3.5/Ex3_5.sce11
-rwxr-xr-x1664/CH3/EX3.6/Ex3_6.sce13
-rwxr-xr-x1664/CH4/EX4.1/Ex4_1.sce12
-rwxr-xr-x1664/CH4/EX4.10/Ex4_10.sce11
-rwxr-xr-x1664/CH4/EX4.11/Ex4_11.sce14
-rwxr-xr-x1664/CH4/EX4.12/Ex4_12.sce15
-rwxr-xr-x1664/CH4/EX4.13/Ex4_13.sce31
-rwxr-xr-x1664/CH4/EX4.14/Ex4_14.sce11
-rwxr-xr-x1664/CH4/EX4.15/Ex4_15.sce21
-rwxr-xr-x1664/CH4/EX4.2/Ex4_2.sce23
-rwxr-xr-x1664/CH4/EX4.3/Ex4_3.sce17
-rwxr-xr-x1664/CH4/EX4.4/Ex4_4.sce17
-rwxr-xr-x1664/CH4/EX4.5/Ex4_5.sce18
-rwxr-xr-x1664/CH4/EX4.6/Ex4_6.sce9
-rwxr-xr-x1664/CH4/EX4.7/Ex4_7.sce12
-rwxr-xr-x1664/CH4/EX4.8/Ex4_8.sce11
-rwxr-xr-x1664/CH4/EX4.9/Ex4_9.sce12
-rwxr-xr-x1664/CH6/EX6.1/Ex6_1.sce8
-rwxr-xr-x1664/CH6/EX6.10/Ex6_10.sce21
-rwxr-xr-x1664/CH6/EX6.11/Ex6_11.sce12
-rwxr-xr-x1664/CH6/EX6.12/Ex6_12.sce22
-rwxr-xr-x1664/CH6/EX6.13/Ex6_13.sce13
-rwxr-xr-x1664/CH6/EX6.14/Ex6_14.sce12
-rwxr-xr-x1664/CH6/EX6.15/Ex6_15.sce14
-rwxr-xr-x1664/CH6/EX6.16/Ex6_16.sce13
-rwxr-xr-x1664/CH6/EX6.17/Ex6_17.sce18
-rwxr-xr-x1664/CH6/EX6.18/Ex6_18.sce11
-rwxr-xr-x1664/CH6/EX6.2/Ex6_2.sce17
-rwxr-xr-x1664/CH6/EX6.3/Ex6_3.sce13
-rwxr-xr-x1664/CH6/EX6.4/Ex6_4.sce14
-rwxr-xr-x1664/CH6/EX6.5/Ex6_5.sce17
-rwxr-xr-x1664/CH6/EX6.6/Ex6_6.sce10
-rwxr-xr-x1664/CH6/EX6.7/Ex6_7.sce15
-rwxr-xr-x1664/CH6/EX6.8/Ex6_8.sce13
-rwxr-xr-x1664/CH6/EX6.9/Ex6_9.sce11
-rwxr-xr-x1664/CH7/EX7.1/Ex7_1.sce20
-rwxr-xr-x1664/CH7/EX7.2/Ex7_2.sce18
-rwxr-xr-x1664/CH7/EX7.3/Ex7_3.sce17
-rwxr-xr-x1664/CH8/EX8.1/Ex8_1.sce10
-rwxr-xr-x1664/CH8/EX8.10/Ex8_10.sce9
-rwxr-xr-x1664/CH8/EX8.11/Ex8_11.sce16
-rwxr-xr-x1664/CH8/EX8.2/Ex8_2.sce8
-rwxr-xr-x1664/CH8/EX8.3/Ex8_3.sce9
-rwxr-xr-x1664/CH8/EX8.4/Ex8_4.sce8
-rwxr-xr-x1664/CH8/EX8.5/Ex8_5.sce10
-rwxr-xr-x1664/CH8/EX8.6/Ex8_6.sce11
-rwxr-xr-x1664/CH8/EX8.7/Ex8_7.sce8
-rwxr-xr-x1664/CH8/EX8.8/Ex8_8.sce8
-rwxr-xr-x1664/CH8/EX8.9/Ex8_9.sce14
-rwxr-xr-x1664/CH9/EX9.1/Ex9_1.sce12
-rwxr-xr-x1664/CH9/EX9.10/Ex9_10.sce10
-rwxr-xr-x1664/CH9/EX9.11/Ex9_11.sce25
-rwxr-xr-x1664/CH9/EX9.2/Ex9_2.sce12
-rwxr-xr-x1664/CH9/EX9.3/Ex9_3.sce12
-rwxr-xr-x1664/CH9/EX9.4/Ex9_4.sce19
-rwxr-xr-x1664/CH9/EX9.5/Ex9_5.sce10
-rwxr-xr-x1664/CH9/EX9.6/Ex9_6.sce15
-rwxr-xr-x1664/CH9/EX9.7/Ex9_7.sce10
-rwxr-xr-x1664/CH9/EX9.8/Ex9_8.sce11
-rwxr-xr-x1664/CH9/EX9.9/Ex9_9.sce10
98 files changed, 1261 insertions, 0 deletions
diff --git a/1664/CH1/EX1.1/Ex1_1.sce b/1664/CH1/EX1.1/Ex1_1.sce
new file mode 100755
index 000000000..49d50dc0d
--- /dev/null
+++ b/1664/CH1/EX1.1/Ex1_1.sce
@@ -0,0 +1,12 @@
+
+
+// Example No.1.1.
+// Page No.28.
+clc;clear;
+t = 0.15*10^(-2);//Thickness of the quartz crystal -[m].
+Y = 7.9* 10^(10);//Young's modulus of quartz -[N/m^2].
+d = 2650;//Density of quartz -[kg/m^3].
+f = (1/(2*t))*(sqrt(Y/d));//'f' is fndamental frequency of vibration.
+f = f*10^(-6);//fundamental frequency of vibration.
+printf("\nThe fundamental frequency of vibration of the crystal is %.4f MHz",f);
+
diff --git a/1664/CH1/EX1.2/Ex1_2.sce b/1664/CH1/EX1.2/Ex1_2.sce
new file mode 100755
index 000000000..0b0f3acdd
--- /dev/null
+++ b/1664/CH1/EX1.2/Ex1_2.sce
@@ -0,0 +1,14 @@
+
+
+// Example No.1.2.
+// Page No. 28.
+clc;clear;
+t = 1*10^(-3);//Thickness of the quartz crystal -[m].
+Y = 7.9* 10^(10);//Young's modulus of quartz -[N/m^2].
+d = 2650;//Density of quartz -[kg/m^3].
+p = 1;
+f1 = (p/(2*t))*(sqroot(Y/d));//For fundamental frequency p=1.
+printf("\nThe fundamental frequency of vibration of the crystal is %3.3e Hz",f1);
+p = 2;
+f2 = (p/(2*t))*(sqroot(Y/d));// f2 is frequency of first overtone and for the first overtone P=2.
+printf("\nThe frequency of the first overtone of the crystal is %3.3e Hz",f2);
diff --git a/1664/CH1/EX1.3/Ex1_3.sce b/1664/CH1/EX1.3/Ex1_3.sce
new file mode 100755
index 000000000..d804d9284
--- /dev/null
+++ b/1664/CH1/EX1.3/Ex1_3.sce
@@ -0,0 +1,13 @@
+
+
+// Example No.1.3.
+// Page No.29.
+clc;clear;
+w = 5.893*10^(-7);//Wavelength of the light -[m].
+f = 1*10^(8);//Frequency of the ultrasonic transducer -[Hz].
+n = 1;//Order of diffraction.
+d = 7.505*10^(-6);
+w = 2*d;//wavelength of the ultrasonic wave.
+printf("\nThe wavelength of the ultrasonic wave is %3.3e m",w);
+v = f*w;//Velocity of the ultrasonic wave.
+printf("\nThe velocity of ultrasonic wave is %.f m/s",v);
diff --git a/1664/CH1/EX1.4/Ex1_4.sce b/1664/CH1/EX1.4/Ex1_4.sce
new file mode 100755
index 000000000..d7571b4bb
--- /dev/null
+++ b/1664/CH1/EX1.4/Ex1_4.sce
@@ -0,0 +1,10 @@
+
+// Example No.1.4.
+// Page No.29.
+clc;clear;
+f = 2*10^(6);//frequency of transducer -[Hz].
+cosq = cosd(30);//Angle of inclination of the probe -[degree].
+c = 800;//Velocity of ultrasonic wave -[m/s].
+v = 3;//Speed of blood -[m/s].
+delf = ((2*f*v*cosq)/c);//Doppler shifted frequency.
+printf("\nThe Doppler shifted frequency is %3.3e Hz",delf);
diff --git a/1664/CH1/EX1.5/Ex1_5.sce b/1664/CH1/EX1.5/Ex1_5.sce
new file mode 100755
index 000000000..717d6cd6b
--- /dev/null
+++ b/1664/CH1/EX1.5/Ex1_5.sce
@@ -0,0 +1,8 @@
+
+// Example No.1.5.
+// Page No.30.
+clc;clear;
+Y = 7.9*10^(10);//Young's modulus of quartz -[N/m^2].
+d = 2650;//Density of quartz -[kg/m^3].
+v = sqroot(Y/d);//Velocity of ultrasonic wave.
+printf("\nThe velocity of the ultrasonic waves is %.2f m/s",v);
diff --git a/1664/CH10/EX10.1/Ex10_1.sce b/1664/CH10/EX10.1/Ex10_1.sce
new file mode 100755
index 000000000..d176ea6c3
--- /dev/null
+++ b/1664/CH10/EX10.1/Ex10_1.sce
@@ -0,0 +1,12 @@
+
+//Example NO.10.1
+//Page No.305
+//To find magnetization & flux density.
+clc;clear;
+H = (10^6);//Magnetic field strength -[A/m].
+x = (0.5*10^-5);//Magnetic suceptibility.
+M = (x*H);//Magnetization.
+printf("\nMagnetization of the material is %.0f A/m",M);
+u0 = (4*%pi*10^-7);
+B = (u0*(M+H));//Flux density.
+printf("\nFlux density of the material is %.3f Wb/m^2",B);
diff --git a/1664/CH10/EX10.2/Ex10_2.sce b/1664/CH10/EX10.2/Ex10_2.sce
new file mode 100755
index 000000000..0fa38fecf
--- /dev/null
+++ b/1664/CH10/EX10.2/Ex10_2.sce
@@ -0,0 +1,16 @@
+
+
+//Example NO.10.2
+//Page No.306
+clc;clear;
+B = 0.65;//Saturation magnetic induction -[Wb/m^2].
+p = 8906;//Density -[kg/m^3].
+Mat = 58.7;//Atomic weight of Ni
+A = (6.022*10^26);//Avagadro's constant.
+N = ((p*A)/Mat);//Number of atoms per m^-3.
+printf("\nNumber of atoms per m^-3 are %3.3e m^-3",N);
+u0 = (4*%pi*10^-7);
+um = (B/(N*u0));
+printf("\nMagnetic moment is %3.3e ",um);
+Mni = (um/(9.27*10^-24));
+printf("\nMagnetic moment of nickel atom is %.2f uB",Mni);
diff --git a/1664/CH10/EX10.3/Ex10_3.sce b/1664/CH10/EX10.3/Ex10_3.sce
new file mode 100755
index 000000000..aa95dbebe
--- /dev/null
+++ b/1664/CH10/EX10.3/Ex10_3.sce
@@ -0,0 +1,12 @@
+
+//Example NO.10.3
+//Page No.306
+clc;clear;
+H = 1800;//Magnetic field -[A/m].
+F = (3*10^-5);//Magnetic flux -[Wb].
+A = 0.2*10^-4;//Area of cross section -[m].
+u0 = (4*%pi*10^-7);
+B = (F/A);//Magnetic flux density.
+printf("\nMagnetic flux density is %.1f Wb/m^2",B);
+ur = (B/(u0*H));//Relative permeability.
+printf("\nRelative permeability of the material is %.2f",ur);
diff --git a/1664/CH10/EX10.4/Ex10_4.sce b/1664/CH10/EX10.4/Ex10_4.sce
new file mode 100755
index 000000000..2fae5a47b
--- /dev/null
+++ b/1664/CH10/EX10.4/Ex10_4.sce
@@ -0,0 +1,9 @@
+
+//Example NO.10.4
+//Page No.307
+clc;clear;
+u = 18.4;//Magnetic moment -[uB].
+uB = (9.27*10^-24);
+a = (0.835*10^-9);//Lattice parameter-[m].
+M = (u*uB/a^3);//Magnetization.
+printf("\nSaturation magnetization for Ni ferrite is %3.3e A/m",M);
diff --git a/1664/CH10/EX10.5/Ex10_5.sce b/1664/CH10/EX10.5/Ex10_5.sce
new file mode 100755
index 000000000..86e4687ad
--- /dev/null
+++ b/1664/CH10/EX10.5/Ex10_5.sce
@@ -0,0 +1,11 @@
+
+//Example NO.10.5
+//Page No.307
+clc;clear;
+H = (2*10^5);//Magnetic field strength -[A/m].
+ur = 1.01;//Relative permeability.
+u0 = (4*%pi*10^-7);
+B = (u0*ur*H);//Magnetic flux density.
+printf("\nMagnetic flux density is %.4f Wb/m^2",B);
+M = ((0.2538/u0)-(H));//Magnetization
+printf("\nMagnetization of the material is %.2f A/m",M);
diff --git a/1664/CH10/EX10.6/Ex10_6.sce b/1664/CH10/EX10.6/Ex10_6.sce
new file mode 100755
index 000000000..70265aa88
--- /dev/null
+++ b/1664/CH10/EX10.6/Ex10_6.sce
@@ -0,0 +1,11 @@
+
+//Example NO.10.6
+//Page No.307
+clc;clear;
+H = (500);//Magnetic field strength -[A/m].
+x = (1.2);//Suceptibility.
+M = (x*H);//Magnetization.
+printf("\nMagnetization of the material is %.0f A/m",M);
+u0 = (4*%pi*10^-7);
+B = (u0*(M+H));//Magnetic flux density.
+printf("\nMagnetic flux density inside the material is %3.3e Wb/m^2",B);
diff --git a/1664/CH11/EX11.1/Ex11_1.sce b/1664/CH11/EX11.1/Ex11_1.sce
new file mode 100755
index 000000000..772446c63
--- /dev/null
+++ b/1664/CH11/EX11.1/Ex11_1.sce
@@ -0,0 +1,11 @@
+
+//Example NO.11.1
+//Page No.335
+//To find dielectric constant of the material
+clc;clear;
+C = (10^-9);//Capacitance -[F].
+d = (2*10^-3);//Distance of separation -[m].
+E0 = (8.854*10^-12);
+A = (10^-4);//Area of capacitor -[m^2]
+Er = ((C*d)/(E0*A));//Dielectric constant.
+printf("\nThe dielectric constant of the material is %.2f",Er);
diff --git a/1664/CH11/EX11.2/Ex11_2.sce b/1664/CH11/EX11.2/Ex11_2.sce
new file mode 100755
index 000000000..cdf9bb0cf
--- /dev/null
+++ b/1664/CH11/EX11.2/Ex11_2.sce
@@ -0,0 +1,12 @@
+
+//Example NO.11.2
+//Page No.335
+//To find electronic polarizability of He gas.
+clc;clear;
+E0 = (8.854*10^-12);
+Er = (1.0000684);//Dielectric constant of He-gas
+N = (2.7*10^25);//Concentration of dipoles -[per m^3].
+P = (E0*(Er-1));
+a = (P/(N));
+a = (P/(2.7*10^25));//Electronic polarizability.
+printf("\nElectronic polarizability of He gas is %3.3e F m^2",a);
diff --git a/1664/CH11/EX11.3/Ex11_3.sce b/1664/CH11/EX11.3/Ex11_3.sce
new file mode 100755
index 000000000..74e8123f8
--- /dev/null
+++ b/1664/CH11/EX11.3/Ex11_3.sce
@@ -0,0 +1,10 @@
+
+
+//Example NO.11.3
+//Page No.336
+clc;clear;
+E0 = (8.854*10^-12);
+Er = (6);//Dielectric constant.
+E = 100;//Electric field intensity -[V/m].
+P = (E0*(Er-1)*E);//Polarization.
+printf("\nPolarization produced in a dielectric medium is %3.3e C/m^2",P);
diff --git a/1664/CH11/EX11.4/Ex11_4.sce b/1664/CH11/EX11.4/Ex11_4.sce
new file mode 100755
index 000000000..9cd1c42cb
--- /dev/null
+++ b/1664/CH11/EX11.4/Ex11_4.sce
@@ -0,0 +1,9 @@
+
+
+//Example NO.11.4
+//Page No.336
+clc;clear;
+E0 = (8.854*10^-12);
+R = (0.158*10^-9);//Radius of neon -[m].
+a = (4*%pi*E0*R^3);//Electronic polarizability.
+printf("\nElectronic polarizability of neon is %3.3e F m^2",a);
diff --git a/1664/CH11/EX11.5/Ex11_5.sce b/1664/CH11/EX11.5/Ex11_5.sce
new file mode 100755
index 000000000..8534fac63
--- /dev/null
+++ b/1664/CH11/EX11.5/Ex11_5.sce
@@ -0,0 +1,10 @@
+
+//Example NO.11.5
+//Page No.336
+clc;clear;
+E0 = (8.854*10^-12);// [C^2/N.m^2].
+Er = 6;//Dielectric constant.
+C = (0.02*10^-6);//Capacitance -[F].
+d = (0.002*10^-2);//Thickness of mica -[m].
+A = ((C*d)/(E0*Er));//Area of the metal sheet.
+printf("\nArea of the metal sheet required is %3.3e m^2",A);
diff --git a/1664/CH11/EX11.6/Ex11_6.sce b/1664/CH11/EX11.6/Ex11_6.sce
new file mode 100755
index 000000000..b465c1318
--- /dev/null
+++ b/1664/CH11/EX11.6/Ex11_6.sce
@@ -0,0 +1,11 @@
+
+//Example NO.11.6
+//Page No.337
+clc;clear;
+E0 = (8.854*10^-12);
+P = (4.3*10^-8);//polarization -[C/m^2].
+E = 1000;//Electric field -[V/m].
+Er = ((P/(E0*E))+1);//Relative permittivity of the crystal.
+printf("\nRelative permittivity of the crystal is %.3f",Er);
+
+//Last statement of this numerical is wrong in the textbook.Here we have to find relative permittivity of the crystal and not the dielectric constant.//
diff --git a/1664/CH11/EX11.7/Ex11_7.sce b/1664/CH11/EX11.7/Ex11_7.sce
new file mode 100755
index 000000000..25dda52b5
--- /dev/null
+++ b/1664/CH11/EX11.7/Ex11_7.sce
@@ -0,0 +1,9 @@
+
+//Example NO.11.7
+//Page No.337
+clc;clear;
+E0 = (8.854*10^-12);
+x = (4.94);//Relative suceptibility.
+N = (10^28);//Number of dipoles per unit volume [per m^3].
+a = ((E0*x)/N);//Polarizability of the material
+printf("\nPolarizability of the material is %3.3e F m^-2",a);
diff --git a/1664/CH12/EX12.1/Ex12_1.sce b/1664/CH12/EX12.1/Ex12_1.sce
new file mode 100755
index 000000000..435da7ed8
--- /dev/null
+++ b/1664/CH12/EX12.1/Ex12_1.sce
@@ -0,0 +1,10 @@
+
+//Example NO.12.1
+//Page No.356
+//To find critical field.
+clc;clear;
+Tc = 3.7;//Critical temperature of tin -[K].
+Ho = 0.0306;//Magnetic field -[T].
+T = 2;//Temperature -[K].
+Hc = Ho*(1-((T^(2))/(Tc^(2))));//Critical magnetic field
+printf("\nCritical field at 2K is %.4f T",Hc);
diff --git a/1664/CH12/EX12.2/Ex12_2.sce b/1664/CH12/EX12.2/Ex12_2.sce
new file mode 100755
index 000000000..16758b720
--- /dev/null
+++ b/1664/CH12/EX12.2/Ex12_2.sce
@@ -0,0 +1,12 @@
+
+
+//Example NO.12.2
+//Page No.356
+//To find critical field.
+clc;clear;
+Tc = 7.26;//Critical temperature of lead -[K].
+Ho = 6.4*10^3;//Magnetic field -[A/m^3].
+T = 5;//Temperature -[K].
+Hc = Ho*(1-((T^(2))/(Tc^(2))));//Critical magnetic field
+printf("\nCritical field at 5K is %.2f T",Hc);
+
diff --git a/1664/CH12/EX12.3/Ex12_3.sce b/1664/CH12/EX12.3/Ex12_3.sce
new file mode 100755
index 000000000..29af6ff1f
--- /dev/null
+++ b/1664/CH12/EX12.3/Ex12_3.sce
@@ -0,0 +1,10 @@
+
+//Example NO.12.3
+//Page No.357
+//To find the value of Tc.
+clc;clear;
+M1 = (199.5^(1/2));//Atomic mass.
+M2 = (203.4^(1/2));//Atomic mass.
+Tc1 = (4.185);//Critical temperature of Hg -[K].
+Tc = (Tc1*M1/M2);//Critical temperature
+printf("\nCritical temperature of Hg with atomic mass,203.4 is %.5f K",Tc);
diff --git a/1664/CH12/EX12.4/Ex12_4.sce b/1664/CH12/EX12.4/Ex12_4.sce
new file mode 100755
index 000000000..d247dffb8
--- /dev/null
+++ b/1664/CH12/EX12.4/Ex12_4.sce
@@ -0,0 +1,17 @@
+
+//Example NO.12.4
+//Page No.357
+//To find critical current density.
+clc;clear;
+D=1*10^(-3);//Diameter of the wire -[m].
+Tc = 7.18;//Critical temperature -[K].
+Ho = 6.5*10^4;//Critical field -[A/m].
+T = 4.2;//Temperature -[K].
+R = 0.5*10^-3;//Radius.
+I = 134.33;//Current.
+Hc = Ho*(1-((T^(2))/(Tc^(2))));
+printf("\nCritical magnetic field is %3.3e A/m",Hc);
+ic = (2*%pi*R*Hc);
+printf("\nCritical current is %.2f A",ic);
+J = (I/(%pi*R^2));
+printf("\nCritical current density is %3.3e A/m^2",J);
diff --git a/1664/CH12/EX12.5/Ex12_5.sce b/1664/CH12/EX12.5/Ex12_5.sce
new file mode 100755
index 000000000..cc2f99b27
--- /dev/null
+++ b/1664/CH12/EX12.5/Ex12_5.sce
@@ -0,0 +1,11 @@
+
+//Example NO.12.5
+//Page No.358
+//To find frequency.
+clc;clear;
+e = (1.6*10^-19);//value of electron.
+V = (6*10^-6);//Voltage applied across the junction -[V]
+h = (6.626*10^-34);//Planck's constant
+v = ((2*e*V)/h);//Frequency of ac signal
+printf("\nFrequency of ac signal is %3.3e Hz",v);
+
diff --git a/1664/CH12/EX12.6/Ex12_6.sce b/1664/CH12/EX12.6/Ex12_6.sce
new file mode 100755
index 000000000..0b41ee9be
--- /dev/null
+++ b/1664/CH12/EX12.6/Ex12_6.sce
@@ -0,0 +1,12 @@
+
+//Example NO.12.6
+//Page No.358
+//To find band gap of superconducting lead
+clc;clear;
+KB = (1.38*10^-23);//Boltzman's constant.
+Tc = (7.19);//Critical temperature of lead -[K].
+Eg = (3.5*KB*Tc);//Energy gap of semiconductor.
+printf("\nBand gap of superconducting lead is %3.3e J",Eg);
+Eg = (Eg/(1.6*10^-19*10^(-3)));
+printf("\nBand gap of superconducting lead is %.2f meV",Eg);
+
diff --git a/1664/CH2/EX2.1/Ex2_1.sce b/1664/CH2/EX2.1/Ex2_1.sce
new file mode 100755
index 000000000..9f66f5479
--- /dev/null
+++ b/1664/CH2/EX2.1/Ex2_1.sce
@@ -0,0 +1,15 @@
+
+//Example No.2.1.
+// Page No.59.
+clc;clear;
+p = 5*10^(-3);// output power -[W].
+w = 632.8*10^(-9);//wavelength -[m].
+h = 6.626*10^(-34);//Planck's constant.
+c = (3*10^(8));//Velocity of light.
+hv = ((h*c)/(w));// Energy of one photon
+printf("\nThe energy of one photon in joules is %3.3e J", hv);
+hv = hv/(1.6*10^(-19));
+printf("\nThe energy of one photon in eV is %.2f eV",hv);
+Np = (p/(3.14*10^(-19)));//Number of photons emitted
+printf("\nThe number of photons emitted per second by He-Ne laser are %3.3e photons per second",Np);
+
diff --git a/1664/CH2/EX2.10/Ex2_10.sce b/1664/CH2/EX2.10/Ex2_10.sce
new file mode 100755
index 000000000..bc3e859e1
--- /dev/null
+++ b/1664/CH2/EX2.10/Ex2_10.sce
@@ -0,0 +1,15 @@
+
+//Example No.2.10.
+// Page No.62.
+clc;clear;
+w = 632.8*10^(-9);//wavelength -[m]
+D = 5;//Distance -[m].
+d = 1*10^(-3);//Diameter -[m].
+deltheta = (w/d);//Angular Spread.
+printf("\nThe angular spread is %3.3e radian",deltheta);
+r = (D*(deltheta));
+r = (5*(deltheta));//Radius of the spread
+printf("\nThe radius of the spread is %3.3e m",r); //Radius of the spread.
+As = ((%pi)*r^(2));//Area of the spread
+printf("\nThe area of the spread is %3.3e m^2",As);//Area of the spread.
+
diff --git a/1664/CH2/EX2.2/Ex2_2.sce b/1664/CH2/EX2.2/Ex2_2.sce
new file mode 100755
index 000000000..d686a93f7
--- /dev/null
+++ b/1664/CH2/EX2.2/Ex2_2.sce
@@ -0,0 +1,11 @@
+
+//Example No.2.2.
+// Page No.60.
+clc;clear;
+w = 632.8*10^(-9);//wavelength -[m].
+h = 6.626*10^(-34);//Planck's constant.
+c = (3*10^(8));//Velocity of light.
+E = ((h*c)/(w));// Energy of one photon
+printf("\nThe energy of emitted photon in joules is %3.3e J",E);
+E = E/(1.6*10^(-19));
+printf("\nThe energy of emitted photon in eV is %.2f eV",E);
diff --git a/1664/CH2/EX2.3/Ex2_3.sce b/1664/CH2/EX2.3/Ex2_3.sce
new file mode 100755
index 000000000..439bdc7aa
--- /dev/null
+++ b/1664/CH2/EX2.3/Ex2_3.sce
@@ -0,0 +1,16 @@
+
+//Example No.2.3.
+// Page No.60.
+clc;clear;
+w = 1.15*10^(-6);//wavelength -[m].
+h = 6.626*10^(-34);
+c = (3*10^(8));
+hv = ((h*c)/(w));// Energy of one photon
+printf("\n The energy of emitted photon is %3.3e J",hv);
+E = ((hv)/(1.6*10^(-19)));
+printf("\n The energy of emitted photon is %.3f eV",E);
+E1 = 0,'eV';//Value of first energy level.
+E2 = 1.4,'eV';//Value of second energy level.
+E3 = (E2+E);//Energy value of 'E3'.
+E3 = ((1.4)+E);
+printf("\n The value of E3 energy level is %.3f eV",E3);
diff --git a/1664/CH2/EX2.4/Ex2_4.sce b/1664/CH2/EX2.4/Ex2_4.sce
new file mode 100755
index 000000000..ccac46d20
--- /dev/null
+++ b/1664/CH2/EX2.4/Ex2_4.sce
@@ -0,0 +1,13 @@
+
+//Example No.2.4;
+//Page No.60;
+clc;clear;
+E1 = 3.2;//Value of higher energy level E1 -[eV].
+E2 = 1.6;//Value of lower energy level E2 -[eV].
+E = (E1-E2);//Energy difference.
+printf("\nThe energy difference is %.1f eV", E);
+h = 6.626*10^(-34);//Planck's constant
+c = 3*10^(8);//Velocity of light.
+E = 1.6*1.6*10^(-19);
+w = ((h*c)/(E));
+printf("\nThe wavelength of the photon is %3.3e m", w);
diff --git a/1664/CH2/EX2.5/Ex2_5.sce b/1664/CH2/EX2.5/Ex2_5.sce
new file mode 100755
index 000000000..88b7fed46
--- /dev/null
+++ b/1664/CH2/EX2.5/Ex2_5.sce
@@ -0,0 +1,9 @@
+
+//Example No.2.5.
+// Page No.60.
+clc;clear;
+E = 1.42;//Bandgap of Ga-As -[eV]
+h = 6.626*10^(-34);//Planck's constant.
+c = 3*10^(8);//Velocity of light.
+w = ((h*c)/(E*1.6*10^(-19)));
+printf("\nThe wavelength of the laser emitted by GaAs is %3.3e m",w);
diff --git a/1664/CH2/EX2.6/Ex2_6.sce b/1664/CH2/EX2.6/Ex2_6.sce
new file mode 100755
index 000000000..bd414e517
--- /dev/null
+++ b/1664/CH2/EX2.6/Ex2_6.sce
@@ -0,0 +1,12 @@
+
+//Example No.2.6.
+// Page No.61.
+clc;clear;
+T = 300;//Temperature -[K]
+K = 1.38*10^(-23);//Boltzman's constant.
+w = 500*10^(-9);//wavelength -[m].
+h = 6.626*10^(-34);//Planck's constant.
+c = (3*10^(8));//velocity of light.
+//By Maxwell's and Boltzman's law.
+N = exp((h*c)/(w*K*T)); //Relative population.
+printf("\nThe relative population between energy levels N1 and N2 is %3.3e",N);//(Relative population between N1 & N2).
diff --git a/1664/CH2/EX2.7/Ex2_7.sce b/1664/CH2/EX2.7/Ex2_7.sce
new file mode 100755
index 000000000..96140023f
--- /dev/null
+++ b/1664/CH2/EX2.7/Ex2_7.sce
@@ -0,0 +1,11 @@
+
+//Example No.2.7.
+// Page No.61.
+clc;clear;
+T = 300;//Temperature -[K]
+K = 1.38*10^(-23);//Boltzman's constant
+w = 600*10^(-9);//wavelength-[m]
+h = 6.626*10^(-34);
+v = (3*10^(8));//velocity.
+S = (1/((exp((h*v)/(w*K*T)))-1));//Se=stimulated emission & SPe= spontaneous emission
+printf("\nThe ratio between stimulated emission and spontaneous emission is %3.3e.\nTherefore, the stimulated emission is not possible in this condition.",S);
diff --git a/1664/CH2/EX2.8/Ex2_8.sce b/1664/CH2/EX2.8/Ex2_8.sce
new file mode 100755
index 000000000..fdd960acd
--- /dev/null
+++ b/1664/CH2/EX2.8/Ex2_8.sce
@@ -0,0 +1,10 @@
+
+//Example No.2.8.
+// Page No.62.
+clc;clear;
+Op = 5*10^(-3);//Output power -[W].
+I = 10*10^(-3);//Current -[A].
+V = 3*10^(3);//Voltage -[V].
+Ip = (10*10^(-3)*3*10^(3));//Input power.
+Eff = (((Op)/(Ip))*(100));//Efficiency of the laser.
+printf("\nThe efficiency of the laser is %.6f percent",Eff);
diff --git a/1664/CH2/EX2.9/Ex2_9.sce b/1664/CH2/EX2.9/Ex2_9.sce
new file mode 100755
index 000000000..63c45348e
--- /dev/null
+++ b/1664/CH2/EX2.9/Ex2_9.sce
@@ -0,0 +1,9 @@
+
+//Example No.2.9.
+// Page No.62.
+clc;clear;
+P = 1*10^(-3);//Output power -[W].
+D = 1*10^(-6);//Diameter -[m].
+r = 0.5*10^(-6);//Radius -[m]
+I = (P/(%pi*r^(2)));// Intensity of laser.
+printf("\nThe intensity of the laser is %3.3e W/m^2",I);
diff --git a/1664/CH3/EX3.1/Ex3_1.sce b/1664/CH3/EX3.1/Ex3_1.sce
new file mode 100755
index 000000000..b0ac62c23
--- /dev/null
+++ b/1664/CH3/EX3.1/Ex3_1.sce
@@ -0,0 +1,9 @@
+
+//Example No. 3.1.
+//Page No.98.
+//To find numerical aperture.
+clc;clear;
+n1 = 1.6;//Refractive index of core.
+n2 = 1.5;// Refractive index of cladding.
+NA = sqroot((n1^(2))-(n2^(2)));//Numerical Aperture.
+printf("\nThe numerical aperture of the fibre is %.4f",NA);
diff --git a/1664/CH3/EX3.2/Ex3_2.sce b/1664/CH3/EX3.2/Ex3_2.sce
new file mode 100755
index 000000000..a830b340a
--- /dev/null
+++ b/1664/CH3/EX3.2/Ex3_2.sce
@@ -0,0 +1,12 @@
+
+//Example No.3.2.
+// Page No.98.
+//To calculate numerical aperture and acceptance angle.
+clc;clear;
+n1 = 1.54;//Refractive index of core.
+n2 = 1.5;// Refractive index of cladding.
+no = 1;
+NA = sqroot((n1^(2))-(n2^(2)));//Numerical Aperture.
+printf("\nThe numerical aperture of the fibre is %.4f",NA);
+t = asind(NA/no);// Acceptance angle.
+printf("\nThe acceptance angle of the fibre is %.4f degree",t);
diff --git a/1664/CH3/EX3.3/Ex3_3.sce b/1664/CH3/EX3.3/Ex3_3.sce
new file mode 100755
index 000000000..e3e0e119f
--- /dev/null
+++ b/1664/CH3/EX3.3/Ex3_3.sce
@@ -0,0 +1,9 @@
+
+//Example No.3.3.
+//Page No. 99.
+//To find critical angle.
+clc;clear;
+n1 = 1.6;//Refractive index of core.
+n2 = 1.49;// Refractive index of cladding.
+Qc = asind((n2)/(n1));//Critical angle.
+printf("\nThe critical angle of the fibre is %.2f degree",Qc);
diff --git a/1664/CH3/EX3.4/Ex3_4.sce b/1664/CH3/EX3.4/Ex3_4.sce
new file mode 100755
index 000000000..eb600fe93
--- /dev/null
+++ b/1664/CH3/EX3.4/Ex3_4.sce
@@ -0,0 +1,14 @@
+
+
+
+//Example No.3.4.
+//Page No. 99.
+//To find refractive index of core and acceptance angle.
+clc;clear;
+NA = 0.15;//Numerical aperture.
+n2 = 1.55;//Refractive index of cladding.
+n0 = 1.33;//Refractive index of water.
+n1 = sqroot((NA^(2))+(n2^(2)));// Refractive index of core.
+printf("\nThe refractive index of the core is %.4f",n1);
+t = asind(NA/n0);// Acceptance angle.
+mprintf("\nThe acceptance angle of the fibre is %.3f degree",t);
diff --git a/1664/CH3/EX3.5/Ex3_5.sce b/1664/CH3/EX3.5/Ex3_5.sce
new file mode 100755
index 000000000..e63163422
--- /dev/null
+++ b/1664/CH3/EX3.5/Ex3_5.sce
@@ -0,0 +1,11 @@
+
+
+//Example No.3.5.
+//Page No. 100.
+//To find refractive index of cladding.
+clc;clear;
+d = 100;//Core diameter.
+NA = 0.26;//Numerical aperture.
+n1 = 1.5;//Refractive index of core.
+n2 = sqroot((n1^(2))-(NA^(2)));// Refractive index of cladding.
+printf("\nThe refractive index of the cladding is %.3f",n2);
diff --git a/1664/CH3/EX3.6/Ex3_6.sce b/1664/CH3/EX3.6/Ex3_6.sce
new file mode 100755
index 000000000..9d5413690
--- /dev/null
+++ b/1664/CH3/EX3.6/Ex3_6.sce
@@ -0,0 +1,13 @@
+
+
+//Example No.3.6.
+// Page No.100.
+//To find refractive idex.
+clc;clear;
+NA = 0.26;//Numerical aperture.
+del = 0.015;//Refractive index difference of the fibre.
+n1 = sqroot((((NA)^(2))/(2*del)));//Refractive index of the core
+printf("\nThe refractive index of the core is %.2f",n1);
+n2 = sqroot((n1^(2))-(NA^(2)));// Refractive index of cladding.
+printf("\nThe refractive index of cladding is %.3f",n2);
+
diff --git a/1664/CH4/EX4.1/Ex4_1.sce b/1664/CH4/EX4.1/Ex4_1.sce
new file mode 100755
index 000000000..53e6e9aae
--- /dev/null
+++ b/1664/CH4/EX4.1/Ex4_1.sce
@@ -0,0 +1,12 @@
+
+
+//Example No 133.
+//Page No 4.1.
+//To find change in wavelength.
+clc;clear;
+h = 6.63*10^(-34);//Planck's constant -[J-s].
+m0 = 9.1*10^(-31);//mass of electron -[kg].
+c = 3*10^(8);//Velocity of ligth -[m/s].
+cosq = cosd(135);//Angle of scattering -[degree].
+delW = (h/(m0*c))*(1-cosq);//change in wavelength.
+printf("\nThe change in wavelength is %3.3e m",delW);
diff --git a/1664/CH4/EX4.10/Ex4_10.sce b/1664/CH4/EX4.10/Ex4_10.sce
new file mode 100755
index 000000000..998440c83
--- /dev/null
+++ b/1664/CH4/EX4.10/Ex4_10.sce
@@ -0,0 +1,11 @@
+
+
+//Example No.4.10
+// Page No.138.
+//To find the probability.
+clc;clear;
+L = 25*10^(-10);//Width of the potential well -[m].
+delx = 0.05*10^(-10);//Interval -[m].
+x = int(1);
+P = (((2*delx)/L)*x);//'P' is the probability of finding the practicle at an interval of 0.05 .
+printf("\nThe probability of finding the particle is %.3f",P);
diff --git a/1664/CH4/EX4.11/Ex4_11.sce b/1664/CH4/EX4.11/Ex4_11.sce
new file mode 100755
index 000000000..14ac4071b
--- /dev/null
+++ b/1664/CH4/EX4.11/Ex4_11.sce
@@ -0,0 +1,14 @@
+
+//Example No.4.11.
+//Page No.138.
+clc;clear;
+n = 1;//For the lowest energy value n=1.
+h = 6.626*10^(-34);//Planck's constant.
+L = 1*10^(-10);//Width of the potential well -[m].
+m = 9.1*10^(-31);//Mass of the electron.
+E = ((n^(2)*h^(2))/(8*m*L^(2)));
+E = ((h^(2))/(8*m*L^(2)));// For the lowest energy value n=1.
+printf("\nThe lowest energy of the electron in joules is %3.3e J",E);;// Lowest energy of the electron in joules.
+E = (E/(1.6*10^(-19)));
+printf("\nThe lowest energy of the electron in eV is %.2f eV",E);// Lowest energy of the electron in eV.
+
diff --git a/1664/CH4/EX4.12/Ex4_12.sce b/1664/CH4/EX4.12/Ex4_12.sce
new file mode 100755
index 000000000..85253ac74
--- /dev/null
+++ b/1664/CH4/EX4.12/Ex4_12.sce
@@ -0,0 +1,15 @@
+
+
+//Example No.4.12.
+//Page No.139.
+//To find lowest energy of the electron.
+clc;clear;
+n = 1;//For the lowest energy value n=1.
+h = 6.626*10^(-34);//Planck's constant.
+L = 1*10^(-10);//Width of the potential well -[m].
+m = 9.1*10^(-31);//Mass of the electron.
+E = (2*(n^(2)*h^(2))/(8*m*L^(2)));
+//'E' is the Lowest energy of the system.
+printf("\nThe lowest energy of the system in joules is %3.3e J",E);
+E = (E/(1.6*10^(-19)));
+printf("\nThe lowest energy of the system in eV is %.2f eV",E);// Lowest energy of the electron in eV.
diff --git a/1664/CH4/EX4.13/Ex4_13.sce b/1664/CH4/EX4.13/Ex4_13.sce
new file mode 100755
index 000000000..2d4f1c624
--- /dev/null
+++ b/1664/CH4/EX4.13/Ex4_13.sce
@@ -0,0 +1,31 @@
+
+
+//Example No.4.13.
+//Page No.139.
+clc;clear;
+h = 6.626*10^(-34);//Planck's constant.
+L = 1*10^(-10);//Width of the potential well -[m].
+m = 9.1*10^(-31);//Mass of the electron.
+E = ((6*h^(2))/(8*m*L^(2)));
+printf("\n 1) The lowest energy of the system in joules is %3.3e eV",E);
+E = (E/(1.6*10^(-19)));
+printf("\n 2) The lowest energy of the system is %.2f eV",E);
+disp('3) Quantum numbers are,');
+n = 1;
+l = 0;
+ml = 0;
+ms = 0.5;
+ms1 = -0.5;
+printf("\ni)n = %.0f",n);
+printf(" , l = %.0f",l);
+printf(" , ml = %.0f",ml);
+printf(" , ms = %.1f",ms);
+printf("\nii)n = %.0f",n);
+printf(" , l = %.0f",l);
+printf(" , ml = %.0f",ml);
+printf(" , ms1 = %.1f",ms1);
+n=2;
+printf("\niii)n = %.0f",n);
+printf(" , l = %.0f",l);
+printf(" , ml = %.0f",ml);
+printf(" , ms = %.1f",ms);
diff --git a/1664/CH4/EX4.14/Ex4_14.sce b/1664/CH4/EX4.14/Ex4_14.sce
new file mode 100755
index 000000000..9c76d97e8
--- /dev/null
+++ b/1664/CH4/EX4.14/Ex4_14.sce
@@ -0,0 +1,11 @@
+
+
+//Example No.4.14.
+//Page No.140.
+//The mass of the particle.
+clc;clear;
+E = 0.025*1.6*10^(-19);//Lowest energy.
+h = 6.626*10^(-34);//Planck's constant.
+L = 100*10^(-10);//Width of the well -[m].
+m = ((h^(2))/(8*E*L^(2)));
+printf("\nThe mass of the particle is %3.3e kg",m);
diff --git a/1664/CH4/EX4.15/Ex4_15.sce b/1664/CH4/EX4.15/Ex4_15.sce
new file mode 100755
index 000000000..ca6a0230c
--- /dev/null
+++ b/1664/CH4/EX4.15/Ex4_15.sce
@@ -0,0 +1,21 @@
+
+
+//Example No.4.15.
+//Page No.141.
+//To find energy density.
+clc;clear;
+T = 6000;//Temperature -[K].
+k = 1.38*10^(-23);//Boltzman's constant.
+w1 = 450*10^(-9);//wavelength -[m].
+w2 = 460*10^(-9);//wavelength -[m].
+c = 3*10^(8);//Velcity of light.
+v1=(c/w1);
+printf("\nThe velocity for wavelength 450 nm is %3.3e Hz",v1);
+v2 = (c/w2);
+printf("\nThe velocity for wavelength 460 nm is %3.3e Hz",v2);
+v = ((v1+v2)/2);
+printf("\nThe average value of v is %3.3e Hz",v);
+h = 6.626*10^(-34);//Planck's constant.
+d = (8*%pi*h*v^(3))/(c^(3));
+dv = d*(1/(exp((h*v)/(k*T))-1));//Energy density.
+printf("\nThe energy density of the black body is %3.3e J/m^3",dv);
diff --git a/1664/CH4/EX4.2/Ex4_2.sce b/1664/CH4/EX4.2/Ex4_2.sce
new file mode 100755
index 000000000..ea3fb6c91
--- /dev/null
+++ b/1664/CH4/EX4.2/Ex4_2.sce
@@ -0,0 +1,23 @@
+
+
+//Example No.4.2.
+//Page No.134.
+clc;clear;
+h = 6.626*10^(-34);//Planck's constant.
+m0 = 9.1*10^(-31);//mass of electron.
+c = 3*10^(8);//Velocity of ligth.
+cosq = cosd(90);//Scattering angle -[degree].
+delW = (h/(m0*c))*(1-cosq);//Compton's shift
+delW = delW*10^(10);
+printf("\na)The Comptons shift is %.5f A",delW);
+w = 2;//Wavelength -[A]
+W = (delW+w);// Wavelength of the scattered photon.
+printf("\nb)The wavelength of the scattered photon is % 5f A",W);
+E = (h*c)*((1/(w*10^(-10)))-(1/(W*10^(-10))));//Energy of the recoiling electron in joules.
+printf("\nc)The energy of the recoiling electron in joules is %3.3e J",E);
+E = (E/(1.6*10^(-19)));//Energy of the recoiling electron in eV.
+printf("\nc)The energy of the recoiling electron in eV is %3.3e eV",E);
+sinq = sind(90);
+Q = (((h*c)/w)*sinq)/(((h*c)/w)-((h*c)/W)*cosq);
+theta = atand(Q);
+printf("\ne)The angle at which the recoiling electron appears is %.0f degree",theta);
diff --git a/1664/CH4/EX4.3/Ex4_3.sce b/1664/CH4/EX4.3/Ex4_3.sce
new file mode 100755
index 000000000..0b6e998d4
--- /dev/null
+++ b/1664/CH4/EX4.3/Ex4_3.sce
@@ -0,0 +1,17 @@
+
+
+//Example No.4.3.
+//Page NO.135.
+clc;clear;
+h = 6.626*10^(-34);//Planck's constant.
+mo = 9.1*10^(-31);//mass of electron.
+c = 3*10^(8);//Velocity of ligth.
+w = (1*1.6*10^(-19)*10^(6));//wavelength.
+cosq = cosd(60);
+delw = ((h/(mo*c))*(1-cosq));//Compton shift
+delw = delw*10^(10);
+printf("\n1)The Comptons shift = %.3f A",delw);
+E = ((h*c)/w);//energy of the incident photon.
+W = (delw+E);//Wavelength of the scattered photon.
+W = (0.012)+(1.242);
+printf("\n3)The wavelength of the scattered photon = %.3f A",W);
diff --git a/1664/CH4/EX4.4/Ex4_4.sce b/1664/CH4/EX4.4/Ex4_4.sce
new file mode 100755
index 000000000..fa1b6cc19
--- /dev/null
+++ b/1664/CH4/EX4.4/Ex4_4.sce
@@ -0,0 +1,17 @@
+
+
+//Example No 135.
+//Page No 4.4.
+//To find number of photons.
+clc;clear;
+h = 6.63*10^(-34);//Planck's constant.
+c = 3*10^(8);//Velocity of ligth.
+w = 5893*10^(-10);//wavelength.
+Op = 60;//output power -[W].
+E =((h*c)/w);
+printf("\nEnergy of photon in joules is %3.3e J",E);//Energy of photon in joules.
+hv = (E/(1.6*10^(-19)));//Energy of photon in eV.
+printf("\nEnergy of photon in eV is %.3f eV",hv);
+Ps = ((Op)/(E));
+Ps = ((60)/(E));// Number of photons emitted per second.
+printf("\nThe number of photons emitted per second is %3.3e photons per second",Ps);
diff --git a/1664/CH4/EX4.5/Ex4_5.sce b/1664/CH4/EX4.5/Ex4_5.sce
new file mode 100755
index 000000000..95aa1823a
--- /dev/null
+++ b/1664/CH4/EX4.5/Ex4_5.sce
@@ -0,0 +1,18 @@
+
+
+//Example No 136.
+//Page No 4.5.
+//To find mass,momentum & energy of photon.
+clc;clear;
+h = 6.63*10^(-34);//Planck's constant.
+c = 3*10^(8);//Velocity of ligth.
+w = 10*10^(-10);//wavelength.
+E = ((h*c)/w);//Energy.
+printf("\n1)The energy of photon in joules is %3.3e J",E);
+E = E/(1.6*10^(-19)*10^(3));
+printf("\n2)The energy of photon in eV is %.3f Kev",E);
+p = (h/w);//Momentum.
+p = ((6.63*10^(-34))/(10*10^(-10)));
+printf("\n3)The momentum of the photon is %3.3e kg.m/s",p)
+m = (h/(w*c));
+printf("\n4)The mass of the photon is %3.3e kg",m);
diff --git a/1664/CH4/EX4.6/Ex4_6.sce b/1664/CH4/EX4.6/Ex4_6.sce
new file mode 100755
index 000000000..d95eb9e20
--- /dev/null
+++ b/1664/CH4/EX4.6/Ex4_6.sce
@@ -0,0 +1,9 @@
+
+
+//Example No 136.
+//Page No 4.6.
+//To find de-Broglie wavelength.
+clc;clear;
+V=1.25*10^(3);//Potential difference applied -[V].
+w=((12.27)/sqroot(V));//de-Broglie wavelength of electron.
+printf("\nThe de-Broglie wavelength of electron is %.3f A",w);
diff --git a/1664/CH4/EX4.7/Ex4_7.sce b/1664/CH4/EX4.7/Ex4_7.sce
new file mode 100755
index 000000000..5fb97bd66
--- /dev/null
+++ b/1664/CH4/EX4.7/Ex4_7.sce
@@ -0,0 +1,12 @@
+
+
+//Example No.136 .
+//Page No. 4.7.
+//To find de-Broglie wavelength.
+clc;clear;
+E = 45*1.6*10^(-19);//Energy of the electron.
+h = 6.63*10^(-34);//Planck's constant
+m = 9.1*10^(-31);//Mass of the electron.
+w = h/(sqrt(2*m*E));//de-Broglie wavelength.
+printf("\nThe de-Broglie wavelength of the photon is %3.3e m",w);
+
diff --git a/1664/CH4/EX4.8/Ex4_8.sce b/1664/CH4/EX4.8/Ex4_8.sce
new file mode 100755
index 000000000..4c392fe6e
--- /dev/null
+++ b/1664/CH4/EX4.8/Ex4_8.sce
@@ -0,0 +1,11 @@
+
+
+//Example No.4.8.
+//Page No.137.
+//To find de-Broglie wavelength.
+clc;clear;
+h=6.626*10^(-34);//Planck's constant.
+v=10^(7);//Velocity of the electron -[m/s].
+m=9.1*10^(-31);//Mass of the electron.
+w=(h/(m*v));//de-Broglie wavelength
+printf("\nThe de-Broglie wavelength is %3.3e m",w);
diff --git a/1664/CH4/EX4.9/Ex4_9.sce b/1664/CH4/EX4.9/Ex4_9.sce
new file mode 100755
index 000000000..31e1a9573
--- /dev/null
+++ b/1664/CH4/EX4.9/Ex4_9.sce
@@ -0,0 +1,12 @@
+
+
+//Example No 137.
+//Page No 4.9.
+//The de-Broglie wavelength of alpha particle.
+clc;clear;
+V = 1000;//Potential difference applied -[V].
+h = (6.626*10^(-34));//Planck's constant -[J-s].
+m = (1.67*10^(-27));//Mass of a proton -[kg].
+e = (1.6*10^(-19));//charge of electron -[J].
+w = h/sqrt(2*m*e*V);//de-Broglie wavelength
+printf("\nThe de-Broglie wavelength of alpha particle = %3.3e m",w);
diff --git a/1664/CH6/EX6.1/Ex6_1.sce b/1664/CH6/EX6.1/Ex6_1.sce
new file mode 100755
index 000000000..87a083ef5
--- /dev/null
+++ b/1664/CH6/EX6.1/Ex6_1.sce
@@ -0,0 +1,8 @@
+
+//Example No.6.1
+//Page No.185.
+clc;clear;
+Mc = 12;// Mc is the mass of one carbon atom.
+r = 0.071*10^(-9);//radius -[m].
+D = ((8*Mc)/(6.022*10^(26)*((8*r)/(sqrt(3)))^(3)));//density of the diamond.
+printf("\nThe density of diamond is %.1f kg/m^3",D);
diff --git a/1664/CH6/EX6.10/Ex6_10.sce b/1664/CH6/EX6.10/Ex6_10.sce
new file mode 100755
index 000000000..d3b634d9d
--- /dev/null
+++ b/1664/CH6/EX6.10/Ex6_10.sce
@@ -0,0 +1,21 @@
+
+
+// Example No.6.10.
+// Page No.189.
+clc;clear;
+h=1;k=0;l=0;
+d100=1/sqrt(h^2+k^2+l^2);
+disp('Interplanar spacing for d100 plane = a');
+h=1;k=1;l=0;
+d110=1/sqrt(h^2+k^2+l^2);
+disp('Interplanar spacing for d110 plane = a/1.414');
+h=1;k=1;l=1;
+d111=1/sqrt(h^2+k^2+l^2);
+disp('Interplanar spacing for d111 plane = a/1.732');
+x = sqrt(6);
+y = sqrt(3);
+z = sqrt(2);
+printf("\nx = %.3f",x);
+printf("\ny = %.3f",y);
+printf("\nz = %.3f",z);
+printf("\nd100:d110:d111 = %.3f:%.3f:%.3f",x,y,z);
diff --git a/1664/CH6/EX6.11/Ex6_11.sce b/1664/CH6/EX6.11/Ex6_11.sce
new file mode 100755
index 000000000..f88473a9e
--- /dev/null
+++ b/1664/CH6/EX6.11/Ex6_11.sce
@@ -0,0 +1,12 @@
+
+// Example No.6.11.
+// Page No.190.
+clc;clear;
+l1 = 6*(1/2);
+l2 = 6*(1/3);
+l3 = (6*1/6);
+disp('For the plane (231) the intercepts are (a/2),(b/3),(c/1)');
+disp('Ratio of the intercepts made by (231) plane in simple cubic crystal is as follows :');
+disp('l1:l2:l3 = 3:2:6');
+
+//As there are no numerical steps and hence the display statement has been typed directly.
diff --git a/1664/CH6/EX6.12/Ex6_12.sce b/1664/CH6/EX6.12/Ex6_12.sce
new file mode 100755
index 000000000..d6429f49d
--- /dev/null
+++ b/1664/CH6/EX6.12/Ex6_12.sce
@@ -0,0 +1,22 @@
+
+
+// Example No.6.12.
+// Page No.190.
+//To find the lengths of the intercepts.
+clc;clear;
+a = 0.8;
+b = 1.2;
+c = 1.5;
+disp('Ratio of the intercepts are as follows : ');
+disp('I1:I2:I3 = a:b/2:c/3');
+I1 = 0.8;
+disp('0.8:I2:I3 = a:b/2:c/3');
+disp('By substituting values');
+I2=(1.2/2);
+printf("\nI2 = %.1f A",I2);
+I3=(1.5/3);
+printf("\nI3 = %.1f A",I3);
+
+
+
+//As there are no numerical steps and hence the display statement has been typed directly.
diff --git a/1664/CH6/EX6.13/Ex6_13.sce b/1664/CH6/EX6.13/Ex6_13.sce
new file mode 100755
index 000000000..ff4e447e4
--- /dev/null
+++ b/1664/CH6/EX6.13/Ex6_13.sce
@@ -0,0 +1,13 @@
+
+// Example No.6.13.
+// Page No.191.
+//To find the nearest neighbour distance.
+clc;clear;
+disp('i)Simple cubic unit cell');
+disp('The nearest neighbour distance is a');//nearest neighbour distance.
+disp('ii)Body-centered cubic unit cell');
+disp('2r = (0.866)a');
+disp('iii)Face-centered cubic unit cell');
+disp('2r = (0.7071)a');
+
+//As there are no numerical steps and hence the display statement has been typed directly.
diff --git a/1664/CH6/EX6.14/Ex6_14.sce b/1664/CH6/EX6.14/Ex6_14.sce
new file mode 100755
index 000000000..b93675d48
--- /dev/null
+++ b/1664/CH6/EX6.14/Ex6_14.sce
@@ -0,0 +1,12 @@
+
+//Example No.6.14.
+//Page No.191.
+//To find interplanar distance.
+clc;clear;
+// (h,k,l) are the miller indices of the given lattice plane (212).
+h = 2;
+k = 1;
+l = 2;
+a = 2.04;//Lattice constant -[A].
+d = (a/sqrt(h^2+k^2+l^2));
+printf("\nThe interplanar distance is %.2f A",d);
diff --git a/1664/CH6/EX6.15/Ex6_15.sce b/1664/CH6/EX6.15/Ex6_15.sce
new file mode 100755
index 000000000..9a7346b3e
--- /dev/null
+++ b/1664/CH6/EX6.15/Ex6_15.sce
@@ -0,0 +1,14 @@
+
+
+//Example No.6.15.
+//Page No.191.
+clc;clear;
+r = 1.278*10^(-10),'m';
+M = 63.54;//Atomic weight of copper.
+Na = 6.022*10^(26);
+d = 8980;//density
+a = r*sqrt(8);//Interatomic distance.
+printf("\n The interatomic distance is %3.3e m",a);
+n = ((d*a^(3)*Na)/(M));//The number of atoms per unit cell.
+printf("\n Number of atoms per Cu unit cell is %.f",n);
+
diff --git a/1664/CH6/EX6.16/Ex6_16.sce b/1664/CH6/EX6.16/Ex6_16.sce
new file mode 100755
index 000000000..8c4bb5269
--- /dev/null
+++ b/1664/CH6/EX6.16/Ex6_16.sce
@@ -0,0 +1,13 @@
+
+// Example No.6.16.
+// Page No.192.
+//To find the miller indices.
+clc;clear;
+disp('i)Ratio of the intercepts are 0.214 : 1 : 0.188');
+disp('Miller indices for the given plane is (212)');
+disp('ii)Ratio of the intercepts are 0.858 : 1 : 0.754');
+disp('Miller indices for the given plane is (121)');
+disp('iii)Ratio of the intercepts are 0.429 : infinity : 0.126');
+disp('Miller indices for the given plane is (103)');
+
+//There are no numerical computations involved in this example and hence the display statement has been typed directly.
diff --git a/1664/CH6/EX6.17/Ex6_17.sce b/1664/CH6/EX6.17/Ex6_17.sce
new file mode 100755
index 000000000..9c3e71ab5
--- /dev/null
+++ b/1664/CH6/EX6.17/Ex6_17.sce
@@ -0,0 +1,18 @@
+
+// Example No.6.13.
+// Page No.191.
+//To find the number neighbour distance.
+clc;clear;
+disp('i)For (100) plane');
+disp('Number of atoms per m^2 = 1/4r^2');
+disp('i)For (110) plane');
+c1 = 1/(8*sqrt(2));
+printf("\nc1= %.4f",c1);
+disp('Number of atoms per m^2 = (0.084/r^2)');
+disp('i)For (111) plane');
+c2 = 1/(2*sqrt(3));
+printf("\nc2= %.4f",c2);
+disp('Number of atoms per m^2 = (0.2887/r^2)');
+
+
+
diff --git a/1664/CH6/EX6.18/Ex6_18.sce b/1664/CH6/EX6.18/Ex6_18.sce
new file mode 100755
index 000000000..e47e5c45d
--- /dev/null
+++ b/1664/CH6/EX6.18/Ex6_18.sce
@@ -0,0 +1,11 @@
+
+//Example No.6.18
+//Page No.194.
+clc;clear;
+r = 0.97*10^(-10);
+R = 1.81*10^(-10);
+Pd = ((%pi)/(3*sqrt(2)));
+printf("\nThe packing density is %.2f",Pd);
+//Ionic factor of NaCl//
+IPF = (4*(4/3)*%pi*(r^(3)+R^(3)))/((2*(r+R))^(3));//Ionic packing factor of NaCl crystal.
+printf("\nThe ionic packing factor of NaCl crystal is %.3f",IPF);
diff --git a/1664/CH6/EX6.2/Ex6_2.sce b/1664/CH6/EX6.2/Ex6_2.sce
new file mode 100755
index 000000000..06e380df7
--- /dev/null
+++ b/1664/CH6/EX6.2/Ex6_2.sce
@@ -0,0 +1,17 @@
+
+//Example No.6.2.
+//Page No.185.
+clc;clear;
+a1 = 0.332*10^(-9);//Lattice parameter for BCC structure -[m].
+a2 = 0.296*10^(-9);//Lattice parameter for HCP structure -[m].
+c = 0.468*10^(-9);// -[m]
+disp('BCCv is the volume of BCC unit cell');
+BCCv = a1^(3);//Volume of BCC unit cell.
+printf("\nThe volume of BCC unit cell is %3.3e m^-3",BCCv);
+disp('HCPv is the volume of HCP unit cell');
+HCPv = (6*(sqrt(3)/4)*a2^(2)*c);//Volume of HCP unit cell.
+printf("\nThe volume of HCP unit cell is %3.3e m^3",HCPv);
+Cv = (HCPv-BCCv);
+printf("\nThe change in volume is %3.3e",Cv);
+Vp = (Cv/BCCv)*100;
+printf("\nThe volume change in percentage is %.1f percent",Vp);
diff --git a/1664/CH6/EX6.3/Ex6_3.sce b/1664/CH6/EX6.3/Ex6_3.sce
new file mode 100755
index 000000000..447c504e2
--- /dev/null
+++ b/1664/CH6/EX6.3/Ex6_3.sce
@@ -0,0 +1,13 @@
+
+//Example No.6.3
+//Page No.186.
+clc;clear;
+r = 1.278*10^(-10);//Atomic radius of copper -[m].
+A = 63.54;//Atomic weight of copper.
+n = 4;
+Na = 6.022*10^(26);
+a = (2*sqrt(2)*r);
+printf("\nThe lattice constant for FCC is %3.3e",a);
+d = ((n*A)/(Na*a^(3)));//for FCCn=4.
+d = ((n*A)/(Na*(3.61*10^(-10))^(3)));
+printf("\nThe density of copper is %.0f kg/m^3",d);
diff --git a/1664/CH6/EX6.4/Ex6_4.sce b/1664/CH6/EX6.4/Ex6_4.sce
new file mode 100755
index 000000000..e45056c2a
--- /dev/null
+++ b/1664/CH6/EX6.4/Ex6_4.sce
@@ -0,0 +1,14 @@
+
+//Example No.6.4.
+//Page No.186.
+clc;clear;
+Na = 23;//Atomic weight of Na
+Cl = 35.5;//Atomic weight of Cl
+d = 2180;//Density of Nacl -[kg/m^3].
+nA = 6.022*10^(26);
+NaCl = (Na+Cl)//Molecular weight of NaCl.
+printf("\n1) Molecular weigth of NaCl is %.1f",NaCl);
+n = 4;
+A = 58.5;
+a = (((n*A)/(nA*d))^(1/3));
+printf("\n2) The interatomic distance of NaCl crystal is %3.3e m",a);
diff --git a/1664/CH6/EX6.5/Ex6_5.sce b/1664/CH6/EX6.5/Ex6_5.sce
new file mode 100755
index 000000000..66fa4d58e
--- /dev/null
+++ b/1664/CH6/EX6.5/Ex6_5.sce
@@ -0,0 +1,17 @@
+
+//Example No.6.5.
+//Page No.187.
+clc;clear;
+a = 0.42;//Lattice constant -[nm].
+//(h1,k1,l1) are the miller indices of the plane (101).
+h1 = 1;
+k1 = 0;
+l1 = 1;
+d1 = (a/sqrt(h1^(2)+k1^(2)+l1^(2)));//interplanar and interatomic distance of plane (101)
+printf("\nFor (101) plane, the interplanar and interatomic distance is %.4f nm",d1);
+// (h2,k2,l2) are the miller indices of the plane (221).
+h2 = 2;
+k2 = 2;
+l2 = 1;
+d2 = (a/sqrt(h2^(2)+k2^(2)+l2^(2)));//interplanar and interatomic distance of plane (221)
+printf("\nFor (221) plane, the interplanar and interatomic distance is %.2f nm",d2);
diff --git a/1664/CH6/EX6.6/Ex6_6.sce b/1664/CH6/EX6.6/Ex6_6.sce
new file mode 100755
index 000000000..1e0d4b1bc
--- /dev/null
+++ b/1664/CH6/EX6.6/Ex6_6.sce
@@ -0,0 +1,10 @@
+
+// Example No.6.6.
+// Page No.187.
+clc;clear;
+disp('For the plane (102),the intercepts are (a/1) = a,(b/0) = infinity ,c/2');
+disp('For the plane (231),the intercepts are a/2 , b/3 and (c/1) = c');
+disp('For the plane (312),the intercepts are a/3 ,(b/-1) = -b ,c/2');
+
+//As there are no numerical steps available and hence the display statement has been typed directly.
+
diff --git a/1664/CH6/EX6.7/Ex6_7.sce b/1664/CH6/EX6.7/Ex6_7.sce
new file mode 100755
index 000000000..bdc496f89
--- /dev/null
+++ b/1664/CH6/EX6.7/Ex6_7.sce
@@ -0,0 +1,15 @@
+
+//Example No.6.7
+//Page No.188.
+//Find the angle between two planes (111) and (212) in a cubic lattice.
+clc;clear;
+// (u1,v1,w1) are the miller indices of the plane (111).
+u1 = 1;
+v1 = 1;
+w1 = 1;
+// (u2,v2,w2) are the miller indices of the plane (212).
+u2 = 2;
+v2 = 1;
+w2 = 2;
+u = acosd(((u1*u2)+(v1*v2)+(w1*w2))/((sqrt((u1^2)+(v1^2)+(w1^2))*sqrt((u2^2)+(v2^2)+(w2^2)))));//u is the angle between two planes.
+printf("\n The angle between the planes (111) and (212) is %.3f degree",u);
diff --git a/1664/CH6/EX6.8/Ex6_8.sce b/1664/CH6/EX6.8/Ex6_8.sce
new file mode 100755
index 000000000..3d372d1ec
--- /dev/null
+++ b/1664/CH6/EX6.8/Ex6_8.sce
@@ -0,0 +1,13 @@
+
+// Example No.6.8.
+// Page No.188.
+clc;clear;
+disp('The intercepts of the plane(100) are a ,infinity ,infinity.');
+disp('The intercepts of the cubic plane(110) are a ,a ,infinity.');
+disp('The intercepts of the plane(111) are a ,a ,a.');
+disp('The intercepts of the plane(200) are a/2 ,infinity ,infinity.');
+disp('The intercepts of the plane(120) are a ,a/2 ,infinity.');
+disp('The intercepts of the plane(211) are a/2 ,a ,a.');
+
+//As there are no numerical steps and hence the display statement has been typed directly.
+
diff --git a/1664/CH6/EX6.9/Ex6_9.sce b/1664/CH6/EX6.9/Ex6_9.sce
new file mode 100755
index 000000000..0e9c95ff2
--- /dev/null
+++ b/1664/CH6/EX6.9/Ex6_9.sce
@@ -0,0 +1,11 @@
+
+//Example No.6.9.
+//Page No.189.
+clc;clear;
+d = 0.2338;//'d' is the interplanar distance -[nm].
+// (h,k,l) are the miller indices of the given plane.
+h = (-1);
+k = 1;
+l = 1;
+a = (d*sqrt(h^2+k^2+l^2));//'a' is the lattice constant
+printf("\nThe lattice constant is %.4f nm",a);
diff --git a/1664/CH7/EX7.1/Ex7_1.sce b/1664/CH7/EX7.1/Ex7_1.sce
new file mode 100755
index 000000000..f77835c35
--- /dev/null
+++ b/1664/CH7/EX7.1/Ex7_1.sce
@@ -0,0 +1,20 @@
+
+
+//Example No.7.1
+//Page No.207
+//To find number of vacancies.
+clc;clear;
+Av = 6.022*10^(26);//Avogadro's constant.
+d = 18630;//Density.
+Aw = 196.9;//Atomic weight -[g/mol].
+k = 1.38*10^(-23);//Boltzman's constant.
+T = 900;//Temperature.
+Ev = 0.98*1.6*10^(-19);//Energy of formation.
+N = ((Av*d)/Aw);//Concentration of atoms.
+printf("\nConcentration of atoms = %3.3e m^-3",N);
+n = N*exp(-(Ev)/(k*T));//'n' is number of vacancy.
+printf("\nThe number of vacancies for gold at 900 degree celcius is %3.3e vacancies per m^3",n);
+T1 = 1000;
+Vf = exp((-Ev)/(k*T1));//p=(n/N) is the vacancy fraction.
+printf("\nVacancy fraction = %3.3e",Vf);
+
diff --git a/1664/CH7/EX7.2/Ex7_2.sce b/1664/CH7/EX7.2/Ex7_2.sce
new file mode 100755
index 000000000..f27b74c1e
--- /dev/null
+++ b/1664/CH7/EX7.2/Ex7_2.sce
@@ -0,0 +1,18 @@
+
+
+//Example No.7.2
+//Page No.208.
+//To find energy for vacancy information.
+clc;clear;
+Av = 6.022*10^(26);//Avogadro's constant.
+d = 9500;//Density.
+Aw = 107.9;//Atomic weight -[g/mol].
+k = 1.38*10^(-23);//Boltzman's constant.
+T = 1073;//Temperature -[K]
+n = 3.6*10^(23);//Number of vacancies -[per m^3].
+N = ((Av*d)/Aw);//Concentration of atoms.
+printf("\nConcentration of atoms is %3.3e m^-3",N);
+Ev = k*T*log(N/n);
+printf("\nThe energy for vacancy formation in joules is %3.3e J",Ev);
+Ev = Ev/1.6*10^(19);
+printf("\nThe energy for vacancy formation in eV is %3.3e eV",Ev);
diff --git a/1664/CH7/EX7.3/Ex7_3.sce b/1664/CH7/EX7.3/Ex7_3.sce
new file mode 100755
index 000000000..7248ed32d
--- /dev/null
+++ b/1664/CH7/EX7.3/Ex7_3.sce
@@ -0,0 +1,17 @@
+
+
+//Example No.7.3
+//Page No.209.
+//To find number of Schottky defected.
+clc;clear;
+Av = 6.022*10^(26);//Avogadro's constant.
+d = 1955;//Density.
+Aw = (39.1+35.45);//Atomic weight.
+k = 1.38*10^(-23);//Boltzman's constant.
+T = 773;//Temperature -[K]
+Es = 2.6*1.6*10^(-19);//Energy formation.
+N = ((Av*d)/Aw);//Concentration of atoms.
+printf("\nConcentration of atoms is %3.3e m^-3",N);
+n = N*exp(-(Es)/(2*k*T));
+printf("\nThe number of Schottky defect for KCl at 500 degree celcius is %3.3e Schottky defect per m^-3",n);
+
diff --git a/1664/CH8/EX8.1/Ex8_1.sce b/1664/CH8/EX8.1/Ex8_1.sce
new file mode 100755
index 000000000..cd60b17a7
--- /dev/null
+++ b/1664/CH8/EX8.1/Ex8_1.sce
@@ -0,0 +1,10 @@
+
+//Example No.8.1
+//Page No.231.
+clc;clear;
+m = 9.1*10^(-31);//mass
+n = 2.533*10^(28);//concentration of electrons -[per m^3]
+e = 1.6*10^(-19);//Value of electron.
+Tr = 3.1*10^(-14);//Relaxation time -[s].
+d = m/(n*e^(2)*Tr);//The resistivity of sodium at 0 degree celcius.
+printf("\nThe resistivity of sodium at 0 degree celcius is %3.3e ohm m",d);
diff --git a/1664/CH8/EX8.10/Ex8_10.sce b/1664/CH8/EX8.10/Ex8_10.sce
new file mode 100755
index 000000000..1b567bc61
--- /dev/null
+++ b/1664/CH8/EX8.10/Ex8_10.sce
@@ -0,0 +1,9 @@
+
+//Example No.8.10.
+//Page No.234.
+clc;clear;
+K = 387;//Thermal conductivity of copper -[W m^-1 K^-1].
+d = 5.82*10^(7);//Electrical conductivity of copper -[ohm^-1 m^-1].
+T = 300;//Temperature -[K].
+L = (K/(d*T));
+printf("\nThe Lorentz number is %3.3e W ohm K^-2",L);
diff --git a/1664/CH8/EX8.11/Ex8_11.sce b/1664/CH8/EX8.11/Ex8_11.sce
new file mode 100755
index 000000000..a05737ceb
--- /dev/null
+++ b/1664/CH8/EX8.11/Ex8_11.sce
@@ -0,0 +1,16 @@
+
+//Example No.8.11.
+//Page No.235.
+clc;clear;
+n = 8.49*10^(28);//Concentration of electrons in copper -[m^-3].
+e = 1.6*10^(-19);//Value of electron.
+Tr = 2.44*10^(-14);//Relaxation time of electron -[s]
+m = 9.1*10^(-31);//mass of electron.
+k = 1.38*10^(-23);//Boltzman's constant.
+T = 293;//Temperature -[K].
+d = ((n*e^(2)*Tr)/(m));
+printf("\n1)The electrical conductivity is %3.3e per ohm meter",d);
+K = ((n*(%pi)^(2)*k^(2)*T*Tr)/(3*m));
+printf("\n 2)The thermal conductivity is %.2f W m^-1.K^-1",K);
+L = K/(d*T);
+printf("\n3)The Lorentz number is %3.3e W ohm K^-2",L);
diff --git a/1664/CH8/EX8.2/Ex8_2.sce b/1664/CH8/EX8.2/Ex8_2.sce
new file mode 100755
index 000000000..3130a37fe
--- /dev/null
+++ b/1664/CH8/EX8.2/Ex8_2.sce
@@ -0,0 +1,8 @@
+
+//Example No.8.2.
+//Page No.231.
+clc;clear;
+k = 1.38*10^(-23);//Boltzman's constant.
+slope = 3.75*10^(3);
+Eg = ((2*k)*slope)/(1.6*10^(-19));//The band gap of the semiconductor.
+printf("\nThe band gap of the semiconductor is %.3f eV",Eg);
diff --git a/1664/CH8/EX8.3/Ex8_3.sce b/1664/CH8/EX8.3/Ex8_3.sce
new file mode 100755
index 000000000..538cd8f3d
--- /dev/null
+++ b/1664/CH8/EX8.3/Ex8_3.sce
@@ -0,0 +1,9 @@
+
+//Example No.8.3.
+//Page No.231.
+clc;clear;
+T = 1262;//Temperature -[K].
+k = 1.38*10^(-23);//Boltzman's constant.
+E = 0.5*1.6*10^(-19);//Here E= E-Ef.
+f = 1/(1+exp(E/(k*T)));//'f' is the probability of occupation of electron at 989 degree celcius.
+printf("\nThe probability of occupation of electron at 989 degree celcius is %.2f",f);
diff --git a/1664/CH8/EX8.4/Ex8_4.sce b/1664/CH8/EX8.4/Ex8_4.sce
new file mode 100755
index 000000000..9ae192995
--- /dev/null
+++ b/1664/CH8/EX8.4/Ex8_4.sce
@@ -0,0 +1,8 @@
+//Example No.8.4.
+//Page No.232.
+clc;clear;
+ue = 0.0035*10^(3);// mobility of electron
+E = 0.5;//Electric field strength
+vd = ue*E;
+printf("\nThe drift velocity of the electron is %.2f m/s",vd);
+
diff --git a/1664/CH8/EX8.5/Ex8_5.sce b/1664/CH8/EX8.5/Ex8_5.sce
new file mode 100755
index 000000000..890cf17cb
--- /dev/null
+++ b/1664/CH8/EX8.5/Ex8_5.sce
@@ -0,0 +1,10 @@
+//Example No.8.6.
+//Page No.232.
+clc;clear;
+n = 18.1*10^(28);
+h = 6.62*10^(-34);//Planck's constant.
+m = 9.1*10^(-31);//mass
+Efo = (h^(2)/(8*m))*(((3*n)/(%pi))^(2/3));//The fermi energy level at 0 k.
+printf("\nThe Fermi energy of Al at 0 k in joules is %3.3e J",Efo);
+Efo = (Efo/(1.6*10^(-19)));
+printf("\nThe Fermi energy of Al at 0 k in eV is %3.3e eV",Efo);
diff --git a/1664/CH8/EX8.6/Ex8_6.sce b/1664/CH8/EX8.6/Ex8_6.sce
new file mode 100755
index 000000000..ab978be44
--- /dev/null
+++ b/1664/CH8/EX8.6/Ex8_6.sce
@@ -0,0 +1,11 @@
+
+//Example No.8.6.
+//Page No.232.
+clc;clear;
+n = 18.1*10^(28);
+h = 6.62*10^(-34);//Planck's constant.
+m = 9.1*10^(-31);//mass of electron
+Efo = (h^(2)/(8*m))*(((3*n)/(%pi))^(2/3));//The fermi energy level at 0 k.
+printf("\nFermi energy of Al at 0 k in joules = %3.3e J",Efo);
+Efo = (Efo/(1.6*10^(-19)));
+printf("\nFermi energy of Al at 0 k in eV = %.2fe eV",Efo);
diff --git a/1664/CH8/EX8.7/Ex8_7.sce b/1664/CH8/EX8.7/Ex8_7.sce
new file mode 100755
index 000000000..b17cd2bbe
--- /dev/null
+++ b/1664/CH8/EX8.7/Ex8_7.sce
@@ -0,0 +1,8 @@
+//Example No.8.7.
+//Page No.233.
+clc;clear;
+h = 6.62*10^(-34);//Planck's constant -[J s].
+m = 9.1*10^(-31);//mass -[kg].
+Efo = 5.5*1.6*10^(-19);//Fermi energy.
+n = ((2*m*Efo)^(3/2))*(8*(%pi))/(3*(h^(3)));
+printf("\nThe concentration of free electrons per unit volume of silver is %3.3e m^-3",n);
diff --git a/1664/CH8/EX8.8/Ex8_8.sce b/1664/CH8/EX8.8/Ex8_8.sce
new file mode 100755
index 000000000..e34b56ebe
--- /dev/null
+++ b/1664/CH8/EX8.8/Ex8_8.sce
@@ -0,0 +1,8 @@
+//Example No.8.8.
+//Page No.233.
+clc;clear;
+T = 298;//Temperature -[K].
+k = 1.38*10^(-23);//Boltzman's constant.
+Eg = 1.07*1.6*10^(-19);//Here E= E-Eg.
+f = 1/(1+exp(Eg/(2*k*T)));//probability of an electron to the conduction band at 25 degree celcius.
+printf("\nThe probability of an electron thermlly excited to the conduction band at 25 degree celcius is %3.3e",f);
diff --git a/1664/CH8/EX8.9/Ex8_9.sce b/1664/CH8/EX8.9/Ex8_9.sce
new file mode 100755
index 000000000..52205aaab
--- /dev/null
+++ b/1664/CH8/EX8.9/Ex8_9.sce
@@ -0,0 +1,14 @@
+
+//Example No.8.9.
+//Page No.234.
+clc;clear;
+m = 9.1*10^(-31);//mass of electron.
+k = 1.38*10^(-23);//Boltzman's constant.
+vf = 0.86*10^(6);//Fermi velocity -[m s^-1].
+Ef = 0.5*m*vf^(2);//Fermi energy
+printf("\nThe Fermi energy of the metal in joules is %3.3e J",Ef);
+Ef = Ef/(1.6*10^(-19));
+printf("\nThe Fermi energy o the metal in eV is %.2f eV",Ef);
+Tf = ((Ef)/k);//Fermi temperature.
+Tf = ((3.365*10^(-19))/k);
+printf("\nThe Fermi temperature of the metal is %3.3e K",Tf);
diff --git a/1664/CH9/EX9.1/Ex9_1.sce b/1664/CH9/EX9.1/Ex9_1.sce
new file mode 100755
index 000000000..7fbf6a7f8
--- /dev/null
+++ b/1664/CH9/EX9.1/Ex9_1.sce
@@ -0,0 +1,12 @@
+
+//Example No.9.1.
+//Page No.266.
+//To find number of charge carrier.
+clc;clear;
+d = 2.2;//Conductivity -[ohm^-1 m^-1].
+e = 1.6*10^(-19);//Value of electron.
+u1 = 0.36;//Mobility of the electrons -[m^2 V^-1 s^-1].
+u2 = 0.14;//Mobility of the holes -[m^2 V^-1 s^-1].
+T = 300;//Temperature -[K].
+n = (d/(e*(u1+u2)));//Number of charge carriers
+printf("\nThe carrier concentration of an intrinsic semiconductor is %3.3e m^3",n);
diff --git a/1664/CH9/EX9.10/Ex9_10.sce b/1664/CH9/EX9.10/Ex9_10.sce
new file mode 100755
index 000000000..2226bfa89
--- /dev/null
+++ b/1664/CH9/EX9.10/Ex9_10.sce
@@ -0,0 +1,10 @@
+
+//Example No.9.10.
+//Page No 272.
+clc;clear;
+d = 10^(-6);//Electrical conductivity -[ohm^-1 m^-1].
+e = 1.6*10^(-19);//Electron charge.
+ue = 0.85;//Electron mobility -[m^2 V^-1 s^-1].
+uh = 0.04;//hole mobility -[m^2 V^-1 s^-1].
+Ni = (d/(e*(ue+uh)));//intrinsic carrier concentration
+printf("\nThe intrinsic carrier concentration of GaAs is %3.3e m^-3",Ni);
diff --git a/1664/CH9/EX9.11/Ex9_11.sce b/1664/CH9/EX9.11/Ex9_11.sce
new file mode 100755
index 000000000..216a4bc7d
--- /dev/null
+++ b/1664/CH9/EX9.11/Ex9_11.sce
@@ -0,0 +1,25 @@
+
+
+
+//Example No.9.11.
+//Page No 272.
+clc;clear;
+p = 0.1;//Resistivity of P-type and N-type -[ohm m].
+e = 1.6*10^(-19);//Electron charge.
+Uh = 0.48;//Hole mobility -[m^2 V^-1 s^-1].
+Ue = 1.35;//Electron mobility -[m^2 V^-1 s^-1].
+ni = 1.5*10^(16);
+d = (1/p);//Electrical conductivity
+disp('For P-type material')
+printf("\n1)The electrical conductivity is %.1f ohm^-1 m^-1",d);
+Na = (d/(e*Uh));//Acceptor concentration.
+printf("\n2)The acceptor concentration is %3.3e m^-3",Na);
+n1 = (((ni)^(2))/(Na));//Minority carriers concentration.
+printf("\n3)The minority carriers concentration is %3.3e m^-3",n1);
+disp('For N-type semiconductor')
+d = (1/p);//Electrical conductivity.
+printf("\n2)The electrical conductivity is %.1f ohm^-1 m^-1",d);
+Nd = (d/(e*Ue));//Donor concentration.
+printf("\n2)The donor concentration is %3.3e m^-3",Nd);
+n2 = (((ni)^(2))/(Nd));//Minority carriers concentration.
+printf("\n3)The minority carriers concentration is %3.3e m^-3",n2);
diff --git a/1664/CH9/EX9.2/Ex9_2.sce b/1664/CH9/EX9.2/Ex9_2.sce
new file mode 100755
index 000000000..ae884edd3
--- /dev/null
+++ b/1664/CH9/EX9.2/Ex9_2.sce
@@ -0,0 +1,12 @@
+
+//Example No.9.2.
+//Page No.266.
+//To find conductivity of semiconductor.
+clc;clear;
+d20 = 250;//Conductivity at 20 degree celcius -[ohm^-1 m^-1].
+d100 = 1100;//Conductivity at 100 degree celcius -[ohm^-1 m^-1].
+k = 1.38*10^(-23);//Boltzman's constant.
+Eg = (2*k*((1/373)-(1/293))^(-1)*log((d20/d100)*(373/293)^(3/2)));//Band gap in joules.
+printf("\nBand gap of semiconductor in joules is %3.3e J",Eg);
+Eg = Eg/(1.6*10^(-19));//band gap in eV.
+printf("\nBand gap of semiconductor in eV is %.4f eV",Eg);
diff --git a/1664/CH9/EX9.3/Ex9_3.sce b/1664/CH9/EX9.3/Ex9_3.sce
new file mode 100755
index 000000000..3fdcdcf44
--- /dev/null
+++ b/1664/CH9/EX9.3/Ex9_3.sce
@@ -0,0 +1,12 @@
+
+//Example No.9.3.
+//Page No.267.
+clc;clear;
+B = 0.5;//Magnetic field -[Wb/m^2].
+I = 10^(-2);//Current -[A].
+l = 100;//Length -[mm].
+d = 1;//Thickness -[mm].
+Rh = 3.66*10^(-4);//Hall coefficient -[m^3/C].
+w = 10*10^(-3);//Breadth -[mm].
+Vh = ((B*I*Rh)/w);//Hall voltage.
+printf("\nThe Hall voltage is %3.3e V",Vh);
diff --git a/1664/CH9/EX9.4/Ex9_4.sce b/1664/CH9/EX9.4/Ex9_4.sce
new file mode 100755
index 000000000..031c6007f
--- /dev/null
+++ b/1664/CH9/EX9.4/Ex9_4.sce
@@ -0,0 +1,19 @@
+
+//Example No.9.4.
+//Page No.268.
+clc;clear;
+d = 3*10^(4);//Conductivity -[S/m].
+e = 1.6*10^(-19);//Value of electron.
+ue = 0.13;
+uh = 0.05;
+ni = 1.5*10^(16);
+disp('For N-type semiconductor')
+Nd = (d/(e*ue));
+printf("\ni)The concentration of electron is %3.3e m^-3",Nd);
+p = ((ni)^(2)/(Nd));
+printf("\nii)The concentration of holes is %3.3e m^-3",p);
+disp('For P-type semiconductor')
+Na = (d/(e*uh));
+printf("\ni)The concentration of holes is %3.3e m^-3",Na);
+n = ((ni)^(2)/(Na));
+printf("\nii)The concentration of electron is %3.3e m^-3",n);
diff --git a/1664/CH9/EX9.5/Ex9_5.sce b/1664/CH9/EX9.5/Ex9_5.sce
new file mode 100755
index 000000000..bc1206f3f
--- /dev/null
+++ b/1664/CH9/EX9.5/Ex9_5.sce
@@ -0,0 +1,10 @@
+
+//Example No.9.5.
+//Page No.269.
+//To calculate carrier concentration.
+clc;clear;
+Rh = 3.68*10^(-5);//Hall coefficient -[m^3/C].
+e = 1.6*10^(-19);//Electron charge -[C].
+disp('1)Since the hall voltage is negative,charge carriers of the semiconductors are electrons')
+n = ((3*%pi)/(8*Rh*e));//Carrier concentration.
+printf("\n2)The carrier concentration is %3.3e m^-3",n);
diff --git a/1664/CH9/EX9.6/Ex9_6.sce b/1664/CH9/EX9.6/Ex9_6.sce
new file mode 100755
index 000000000..cdcc17e88
--- /dev/null
+++ b/1664/CH9/EX9.6/Ex9_6.sce
@@ -0,0 +1,15 @@
+
+//Example No.9.6.
+//Page No.269.
+clc;clear;
+Eg1 = 0.36;//Energy gap of the first material -[eV].
+Eg2 = 0.72//Energy gap of the second material -[eV].
+me = 9.1*10^(-31);// -[kg].
+A = 0.052;//'A' is (2*k*T).
+T = 300;//Temperature -[K].
+a = -0.36;
+b = 0.72;
+N = (exp(a/A)*exp(b/A));//Ratio of intrinsic carrier densities of material A & B.
+printf("\nThe ratio of intrinsic carrier densities of the materials A & B is %3.3e",N);
+
+
diff --git a/1664/CH9/EX9.7/Ex9_7.sce b/1664/CH9/EX9.7/Ex9_7.sce
new file mode 100755
index 000000000..0acc65f50
--- /dev/null
+++ b/1664/CH9/EX9.7/Ex9_7.sce
@@ -0,0 +1,10 @@
+
+//Example No.9.7.
+//Page No.270.
+//To find mobility of the electron.
+clc;clear;
+d = 112;//Conductivity -[ohm^-1 m^-1].
+Nd = 2*10^(22);//Concentration of electrons -[m^-3].
+e = 1.6*10^(-19);//Electron charge.
+u = (d/(Nd*e));//Mobility of electrons.
+printf("\nMobility of the electron is %.3f m^2 V^-1 s^-1",u);
diff --git a/1664/CH9/EX9.8/Ex9_8.sce b/1664/CH9/EX9.8/Ex9_8.sce
new file mode 100755
index 000000000..ee6d6ae17
--- /dev/null
+++ b/1664/CH9/EX9.8/Ex9_8.sce
@@ -0,0 +1,11 @@
+
+//Example No.9.8.
+//Page No.270.
+clc;clear;
+Bz = 10*10^(-4);//Magnetic field -[Wb/m^2].
+I = 1;//Current -[A].
+W = 500*10^(-6);//Thickness of the sample -[m].
+n = 10^(16);//Donor concentration.
+e = 1.6*10^(-19);//Electron charge.
+VH = ((Bz*I*3*%pi)/(8*n*e*W));//Hall voltage in the sample.
+printf("\nThe Hall voltage in the sample is %3.3e V",VH);
diff --git a/1664/CH9/EX9.9/Ex9_9.sce b/1664/CH9/EX9.9/Ex9_9.sce
new file mode 100755
index 000000000..4292e6aaf
--- /dev/null
+++ b/1664/CH9/EX9.9/Ex9_9.sce
@@ -0,0 +1,10 @@
+
+//Example No.9.9.
+//Page No 271.
+clc;clear;
+Eg = 1.2*1.6*10^(-19);//Energy gap.
+T1 = 300;//Temperature T1 -[K].
+T2 = 600;//Temperature T2 -[K].
+k = 1.38*10^(-23);//Boltzman's constant.
+N = ((T2/T1)^(3/2))*exp((Eg/(2*k))*((1/T1)-(1/T2)))*10^(-3);//Ratio between the conductivity of the material.
+printf("\nRatio between the conductivity of the material at 600 K and 300 K is %.2f",N);