summaryrefslogtreecommitdiff
path: root/1535/CH6
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1535/CH6
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1535/CH6')
-rwxr-xr-x1535/CH6/EX6.1/Ch06Ex1.sci13
-rwxr-xr-x1535/CH6/EX6.10/Ch06Ex10.sci12
-rwxr-xr-x1535/CH6/EX6.11/Ch06Ex11.sci12
-rwxr-xr-x1535/CH6/EX6.12/Ch06Ex12.sci17
-rwxr-xr-x1535/CH6/EX6.13/Ch06Ex13.sci13
-rwxr-xr-x1535/CH6/EX6.14/Ch06Ex14.sci18
-rwxr-xr-x1535/CH6/EX6.2/Ch06Ex2.sci13
-rwxr-xr-x1535/CH6/EX6.3/Ch06Ex3.sci15
-rwxr-xr-x1535/CH6/EX6.5/Ch06Ex5.sci18
-rwxr-xr-x1535/CH6/EX6.6/Ch06Ex6.sci10
-rwxr-xr-x1535/CH6/EX6.7/Ch06Ex7.sci19
-rwxr-xr-x1535/CH6/EX6.8/Ch06Ex8.sci10
-rwxr-xr-x1535/CH6/EX6.9/Ch06Ex9.sci18
-rwxr-xr-x1535/CH6/EX7.1/Ch07Ex1.sci9
14 files changed, 197 insertions, 0 deletions
diff --git a/1535/CH6/EX6.1/Ch06Ex1.sci b/1535/CH6/EX6.1/Ch06Ex1.sci
new file mode 100755
index 000000000..6a3047212
--- /dev/null
+++ b/1535/CH6/EX6.1/Ch06Ex1.sci
@@ -0,0 +1,13 @@
+// Scilab Code Ex6.1 : Lattice parameter of NaCl crystal : Page-134 (2010)
+M = 23+35.5; // Molecular weight of NaCl, kg per k-mole
+d = 2.18e+03; // Density of rock salt, kg per metre cube
+n = 4; // No. of atoms per unit cell for an fcc lattice of NaCl crystal
+N = 6.023D+26; // Avogadro's No., atoms/k-mol
+// Volume of the unit cell is given by
+// a^3 = M*n/(N*d)
+// Solving for a
+a = (n*M/(d*N))^(1/3); // Lattice constant of unit cell of NaCl
+printf("\nLattice parameter for the NaCl crystal = %4.2f angstrom", a/1e-010);
+
+// Result
+// Lattice parameter for the NaCl crystal = 5.63 angstrom \ No newline at end of file
diff --git a/1535/CH6/EX6.10/Ch06Ex10.sci b/1535/CH6/EX6.10/Ch06Ex10.sci
new file mode 100755
index 000000000..51e79a7e1
--- /dev/null
+++ b/1535/CH6/EX6.10/Ch06Ex10.sci
@@ -0,0 +1,12 @@
+// Scilab Code Ex6.10 : Lattice parameter for (110) planes of cubic crystal: Page-137 (2010)
+h = 1; k = 1; l = 0; // Miller Indices for planes in a cubic crystal
+n = 1; // First Order of diffraction
+theta = 25; // Glancing angle at which Bragg's reflection occurs, degrees
+lambda = 0.7e-010; // Wavelength of X-rays, m
+// From Bragg's Law, n*lambda = 2*d*sind(theta), solving for d
+d = n*lambda/(2*sind(theta)); // Interplanar spacing of cubic crystal, m
+a = d*(h^2+k^2+l^2)^(1/2); // The lattice parameter for cubic crystal, m
+printf("\nThe lattice parameter for cubic crystal = %4.2f angstrom", a/1e-010);
+
+// Result
+// The lattice parameter for cubic crystal = 1.17 angstrom \ No newline at end of file
diff --git a/1535/CH6/EX6.11/Ch06Ex11.sci b/1535/CH6/EX6.11/Ch06Ex11.sci
new file mode 100755
index 000000000..62f8693ac
--- /dev/null
+++ b/1535/CH6/EX6.11/Ch06Ex11.sci
@@ -0,0 +1,12 @@
+// Scilab Code Ex6.11 : Maximum order of diffraction: Page-138 (2010)
+d = 0.31e-009; // Interplanar spacing, m
+n = 1; // First Order of diffraction
+theta = 9.25; // Glancing angle at which Bragg's reflection occurs, degrees
+// From Bragg's Law, n*lambda = 2*d*sind(theta), solving for lambda
+lambda = 2*d*sind(theta)/n; // Wavelength of X-rays, m (Bragg's Law)
+theta_max = 90; // Maximum possible angle at which reflection can occur, degrees
+n = 2*d*sind(theta_max)/lambda; // Maximum possible order of diffraction
+printf("\nThe Maximum possible order of diffraction = %1d",n);
+
+// Result
+// The Maximum possible order of diffraction = 6 \ No newline at end of file
diff --git a/1535/CH6/EX6.12/Ch06Ex12.sci b/1535/CH6/EX6.12/Ch06Ex12.sci
new file mode 100755
index 000000000..f5fa95ee1
--- /dev/null
+++ b/1535/CH6/EX6.12/Ch06Ex12.sci
@@ -0,0 +1,17 @@
+// Scilab Code Ex6.12 : Bragg reflection angle for the second order diffraction: Page-138 (2010)
+// For (110) planes
+h = 1, k = 1, l = 0; // Miller indices for (110) planes
+d_110 = 0.195e-009; // Interplanar spacing between (110) planes, m
+// As d_110 = a/(h^2 + k^2 + l^2)^(1/2), solving for a
+a = d_110*(h^2 + k^2 + l^2)^(1/2); // Lattice parameter for bcc crystal, m
+// For (210) planes
+h = 2, k = 1, l = 0; // Miller indices for (110) planes
+d_210 = a/(h^2 + k^2 + l^2)^(1/2); // Interplanar spacing between (210) planes, m
+n = 2; // Seconds Order of diffraction
+lambda = 0.072e-009; // Wavelength of X-rays, m
+// From Bragg's Law, n*lambda = 2*d_210*sind(theta), solving for theta
+theta = asind(n*lambda/(2*d_210)); // Bragg reflection angle for the second order diffraction, degrees
+printf("\nBragg reflection angle for the second order diffraction = %5.2f degrees", theta);
+
+// Result
+// Bragg reflection angle for the second order diffraction = 35.72 degrees \ No newline at end of file
diff --git a/1535/CH6/EX6.13/Ch06Ex13.sci b/1535/CH6/EX6.13/Ch06Ex13.sci
new file mode 100755
index 000000000..bd20d5322
--- /dev/null
+++ b/1535/CH6/EX6.13/Ch06Ex13.sci
@@ -0,0 +1,13 @@
+// Scilab Code Ex6.13 : Distance between nearest neighbours of NaCl: Page-138 (2010)
+M = 23+35.5; // Molecular weight of NaCl, kg per k-mole
+d = 2.18e+03; // Density of rock salt, kg per metre cube
+n = 4; // No. of atoms per unit cell for an fcc lattice of NaCl crystal
+N = 6.023D+26; // Avogadro's No., atoms/k-mol
+// Volume of the unit cell is given by
+// a^3 = M*n/(N*d)
+// Solving for a
+a = (n*M/(d*N))^(1/3); // Lattice constant of unit cell of NaCl
+printf("\nThe distance between nearest neighbours of NaCl structure = %5.3e", a/2);
+
+// Result
+// The distance between nearest neighbours of NaCl structure = 2.814e-010 \ No newline at end of file
diff --git a/1535/CH6/EX6.14/Ch06Ex14.sci b/1535/CH6/EX6.14/Ch06Ex14.sci
new file mode 100755
index 000000000..b1232a49b
--- /dev/null
+++ b/1535/CH6/EX6.14/Ch06Ex14.sci
@@ -0,0 +1,18 @@
+// Scilab Code Ex6.14 : Effect of structural change on volume : Page-139 (2010)
+// For bcc structure
+r = 1.258e-010; // Atomic radius of bcc structure of iron, m
+a = 4*r/sqrt(3); // Lattice parameter of bcc structure of iron, m
+V = a^3; // Volume of bcc unit cell, metre cube
+N = 2; // Number of atoms per unit cell in bcc structure
+V_atom_bcc = V/N; // Volume occupied by one atom, metre cube
+// For fcc structure
+r = 1.292e-010; // Atomic radius of fcc structure of iron, m
+a = 2*sqrt(2)*r; // Lattice parameter of fcc structure of iron, m
+V = a^3; // Volume of fcc unit cell, metre cube
+N = 4; // Number of atoms per unit cell in fcc structure
+V_atom_fcc = V/N; // Volume occupied by one atom, metre cube
+delta_V = (V_atom_bcc-V_atom_fcc)/V_atom_bcc*100; // Percentage change in volume due to structural change of iron
+printf("\nThe percentage change in volume of iron = %4.2f percent", delta_V);
+
+// Result
+// The percentage change in volume of iron = 0.49 percent \ No newline at end of file
diff --git a/1535/CH6/EX6.2/Ch06Ex2.sci b/1535/CH6/EX6.2/Ch06Ex2.sci
new file mode 100755
index 000000000..6572c2f23
--- /dev/null
+++ b/1535/CH6/EX6.2/Ch06Ex2.sci
@@ -0,0 +1,13 @@
+// Scilab Code Ex6.2 : Miller indices of the crystal plane : Page-134 (2010)
+m = 3; n = 2; p = 1; // Coefficients of intercepts along three axes
+m_inv = 1/m; // Reciprocate the first coefficient
+n_inv = 1/n; // Reciprocate the second coefficient
+p_inv = 1/p; // Reciprocate the third coefficient
+mul_fact = double(lcm(int32([m,n,p]))); // Find l.c.m. of m,n and p
+m1 = m_inv*mul_fact; // Clear the first fraction
+m2 = n_inv*mul_fact; // Clear the second fraction
+m3 = p_inv*mul_fact; // Clear the third fraction
+printf("\nThe required miller indices are : (%d %d %d) ", m1,m2,m3);
+
+// Result
+// The required miller indices are : (2 3 6)
diff --git a/1535/CH6/EX6.3/Ch06Ex3.sci b/1535/CH6/EX6.3/Ch06Ex3.sci
new file mode 100755
index 000000000..90dfcad35
--- /dev/null
+++ b/1535/CH6/EX6.3/Ch06Ex3.sci
@@ -0,0 +1,15 @@
+// Scilab Code Ex6.3 : Indices of lattice plane : Page-135 (2010)
+m = 2; // Coefficient of intercept along x-axis
+n = %inf; // Coefficient of intercept along y-axis
+p = 3/2; // Coefficient of intercept along z-axis
+m_inv = 1/m; // Reciprocate m
+n_inv = 1/n; // Reciprocate n
+p_inv = 1/p; // Reciprocate p
+mul_fact = 6; // multiplicative factor, L.C.M. of 2 and 3 i.e. 6
+m1 = m_inv*mul_fact; // Clear the first fraction
+m2 = n_inv*mul_fact; // Clear the second fraction
+m3 = p_inv*mul_fact; // Clear the third fraction
+printf("\nThe required miller indices are : %d, %d, %d ", m1,m2,m3);
+
+// Result
+// The required miller indices are : 3, 0, 4 \ No newline at end of file
diff --git a/1535/CH6/EX6.5/Ch06Ex5.sci b/1535/CH6/EX6.5/Ch06Ex5.sci
new file mode 100755
index 000000000..5245ad1d9
--- /dev/null
+++ b/1535/CH6/EX6.5/Ch06Ex5.sci
@@ -0,0 +1,18 @@
+// Scilab Code Ex6.5 : Interplanar spacing in cubic crystal: Page-136 (2010)
+
+// For (110) planes
+h = 1; k = 1; l = 0; // Miller Indices for planes in a cubic crystal
+a = 0.43e-009; // Interatomic spacing, m
+d = a/(h^2+k^2+l^2)^(1/2); // The interplanar spacing for cubic crystals, m
+printf("\nThe interplanar spacing between consecutive (110) planes = %4.2f angstrom", d/1e-010);
+
+// For (212) planes
+h = 2; k = 1; l = 2; // Miller Indices for planes in a cubic crystal
+a = 4.21D-10; // Interatomic spacing, m
+d = a/(h^2+k^2+l^2)^(1/2); // The interplanar spacing for cubic crystals, m
+printf("\nThe interplanar spacing between consecutive (212) planes = %4.3f angstrom", d/1e-010);
+
+// Result
+// The interplanar spacing between consecutive (110) planes = 3.04 angstrom
+// The interplanar spacing between consecutive (212) planes = 1.403 angstrom
+
diff --git a/1535/CH6/EX6.6/Ch06Ex6.sci b/1535/CH6/EX6.6/Ch06Ex6.sci
new file mode 100755
index 000000000..ed7143694
--- /dev/null
+++ b/1535/CH6/EX6.6/Ch06Ex6.sci
@@ -0,0 +1,10 @@
+// Scilab Code Ex6.6 : Interplanar spacing in cubic crystal: Page-136 (2010)
+h = 2; k = 3; l = 1; // Miller Indices for planes in a cubic crystal
+r = 0.175e-009; // Atomic radius of fcc lattice, m
+a = 2*sqrt(2)*r; // Interatomic spacing of fcc lattice, m
+d = a/(h^2+k^2+l^2)^(1/2); // The interplanar spacing for cubic crystals, m
+printf("\nThe interplanar spacing between consecutive (231) planes = %4.2f ansgtrom", d/1e-010);
+
+// Result
+// The interplanar spacing between consecutive (231) planes = 1.32 ansgtrom
+
diff --git a/1535/CH6/EX6.7/Ch06Ex7.sci b/1535/CH6/EX6.7/Ch06Ex7.sci
new file mode 100755
index 000000000..1a161982c
--- /dev/null
+++ b/1535/CH6/EX6.7/Ch06Ex7.sci
@@ -0,0 +1,19 @@
+// Scilab Code Ex6.7 : Angle of reflection by using wavelength of X-ray: Page-136 (2010)
+lambda = 1.440e-010; // Wavelength of X-rays, m
+d = 2.8e-010; // Interplanar spacing of rocksalt crystal, m
+// 2*d*sin(theta) = n*lambda **Bragg's law, n is the order of diffraction
+// Solving for theta, we have
+
+// For Ist Order diffraction
+n = 1;
+theta = asind(n*lambda/(2*d)); // Angle of diffraction, degrees
+printf("\nThe angle of reflection for first order diffraction = %4.1f degrees", theta);
+
+// For IInd Order diffraction
+n = 2;
+theta = asind(n*lambda/(2*d)); // Angle of diffraction, degrees
+printf("\nThe angle of reflection for first order diffraction = %4.1f degrees", theta);
+
+// Result
+// The angle of reflection for first order diffraction = 14.9 degrees
+// The angle of reflection for first order diffraction = 30.9 degrees \ No newline at end of file
diff --git a/1535/CH6/EX6.8/Ch06Ex8.sci b/1535/CH6/EX6.8/Ch06Ex8.sci
new file mode 100755
index 000000000..3badbbf59
--- /dev/null
+++ b/1535/CH6/EX6.8/Ch06Ex8.sci
@@ -0,0 +1,10 @@
+// Scilab Code Ex6.8 : Actual volume occupied by the spheres in fcc structure Page-136 (2010)
+N = 8*1/8 + 6*1/2; // total number of spheres in a unit cell
+a = 1; // For convenience, assume interatomic spacing to be unity, m
+r = a/(2*sqrt(2)); // The atomic radius, m
+V_atom = N*4/3*%pi*r^3; // Volume of atoms, metre cube
+V_uc = a^3; // Volume of unit cell, metre cube
+printf("\nThe percentage of actual volume occupied by the spheres in fcc structure = %4.2f percent", V_atom/V_uc*100);
+
+// Result
+// The percentage of actual volume occupied by the spheres in fcc structure = 74.05 percent \ No newline at end of file
diff --git a/1535/CH6/EX6.9/Ch06Ex9.sci b/1535/CH6/EX6.9/Ch06Ex9.sci
new file mode 100755
index 000000000..95ea7edab
--- /dev/null
+++ b/1535/CH6/EX6.9/Ch06Ex9.sci
@@ -0,0 +1,18 @@
+// Scilab Code Ex6.9 : X-ray Diffraction by crystal planes: Page-137 (2010)
+// For (221) planes
+h = 2; k = 2; l = 1; // Miller Indices for planes in a cubic crystal
+a = 2.68e-010; // Interatomic spacing, m
+n = 1; // First Order of diffraction
+theta = 8.5; // Glancing angle at which Bragg's reflection occurs, degrees
+d = a/(h^2+k^2+l^2)^(1/2); // The interplanar spacing for cubic crystal, m
+lambda = 2*d*sind(theta); // Bragg's Law for wavelength of X-rays, m
+n = 2; // Second order of diffraction
+theta = asind(n*lambda/(2*d)); // Angle at which second order Bragg reflection occurs, degrees
+printf("\nThe interplanar spacing between consecutive (221) planes = %5.3e", d);
+printf("\nThe wavelength of X-rays = %5.3f angstrom", lambda/1e-010);
+printf("\nThe angle at which second order Bragg reflection occurs = %4.1f degrees", theta);
+
+// Result
+// The interplanar spacing between consecutive (221) planes = 8.933e-011
+// The wavelength of X-rays = 0.264 angstrom
+// The angle at which second order Bragg reflection occurs = 17.2 degrees \ No newline at end of file
diff --git a/1535/CH6/EX7.1/Ch07Ex1.sci b/1535/CH6/EX7.1/Ch07Ex1.sci
new file mode 100755
index 000000000..037d2328b
--- /dev/null
+++ b/1535/CH6/EX7.1/Ch07Ex1.sci
@@ -0,0 +1,9 @@
+// Scilab Code Ex7.1 : Variation of critical magnetic field with temperature : Page-152 (2010)
+T_c = 3.722; // Critical temperature of superconducting transition, kelvin
+B_c0 = 0.0306; // Critical magnetic field to destroy superconductivity, tesla
+T = 2; // Temperature at which critical magnetic field is to be found out, kelvin
+B_cT = B_c0*(1-(T/T_c)^2);
+printf("\nThe critical magnetic field at %d K = %6.4f T", T, B_cT);
+
+// Result
+// The critical magnetic field at 2 K = 0.0218 T s \ No newline at end of file