diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1535/CH15 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1535/CH15')
-rwxr-xr-x | 1535/CH15/EX15.1/Ch15Ex1.sci | 9 | ||||
-rwxr-xr-x | 1535/CH15/EX15.2/Ch15Ex2.sci | 12 | ||||
-rwxr-xr-x | 1535/CH15/EX15.3/Ch15Ex3.sci | 11 | ||||
-rwxr-xr-x | 1535/CH15/EX15.4/Ch15Ex4.sci | 16 | ||||
-rwxr-xr-x | 1535/CH15/EX15.5/Ch15Ex5.sci | 9 | ||||
-rwxr-xr-x | 1535/CH15/EX15.6/Ch15Ex6.sci | 13 |
6 files changed, 70 insertions, 0 deletions
diff --git a/1535/CH15/EX15.1/Ch15Ex1.sci b/1535/CH15/EX15.1/Ch15Ex1.sci new file mode 100755 index 000000000..a6c3c057a --- /dev/null +++ b/1535/CH15/EX15.1/Ch15Ex1.sci @@ -0,0 +1,9 @@ +// Scilab Code Ex15.1: Page-323 (2010)
+k = 1.38e-023; // Boltzmann constant, J/K
+h = 6.626e-034; // Planck's constant, Js
+f_D = 64e+011; // Debye frequency for Al, Hz
+theta_D = h*f_D/k; // Debye temperature, K
+printf("\nThe Debye temperature of aluminium = %5.1f K", theta_D);
+
+// Result
+// The Debye temperature of aluminium = 307.3 K
\ No newline at end of file diff --git a/1535/CH15/EX15.2/Ch15Ex2.sci b/1535/CH15/EX15.2/Ch15Ex2.sci new file mode 100755 index 000000000..04a4d362d --- /dev/null +++ b/1535/CH15/EX15.2/Ch15Ex2.sci @@ -0,0 +1,12 @@ +// Scilab Code Ex15.2: Page-323 (2010)
+N = 6.02e+026; // Avogadro's number, per kmol
+k = 1.38e-023; // Boltzmann constant, J/K
+h = 6.626e-034; // Planck's constant, Js
+f_D = 40.5e+012; // Debye frequency for Al, Hz
+T = 30; // Temperature of carbon, Ks
+theta_D = h*f_D/k; // Debye temperature, K
+C_l = 12/5*%pi^4*N*k*(T/theta_D)^3; // Lattice specific heat of carbon, J/k-mol/K
+printf("\nThe lattice specific heat of carbon = %4.2f J/k-mol/K", C_l);
+
+// Result
+// The lattice specific heat of carbon = 7.13 J/k-mol/K
\ No newline at end of file diff --git a/1535/CH15/EX15.3/Ch15Ex3.sci b/1535/CH15/EX15.3/Ch15Ex3.sci new file mode 100755 index 000000000..c07746ea6 --- /dev/null +++ b/1535/CH15/EX15.3/Ch15Ex3.sci @@ -0,0 +1,11 @@ +// Scilab Code Ex15.3: Page-323 (2010)
+k = 1.38e-023; // Boltzmann constant, J/K
+h = 6.626e-034; // Planck's constant, Js
+theta_E = 1990; // Einstein temperature of Cu, K
+f_E = k*theta_E/h; // Einstein frequency for Cu, K
+printf("\nThe Einstein frequency for Cu = %4.2e Hz", f_E);
+printf("\nThe frequency falls in the near infrared region");
+
+// Result
+// The Einstein frequency for Cu = 4.14e+013 Hz
+// The frequency falls in the near infrared region
\ No newline at end of file diff --git a/1535/CH15/EX15.4/Ch15Ex4.sci b/1535/CH15/EX15.4/Ch15Ex4.sci new file mode 100755 index 000000000..0d2a6a57e --- /dev/null +++ b/1535/CH15/EX15.4/Ch15Ex4.sci @@ -0,0 +1,16 @@ +// Scilab Code Ex15.4: Page-323 (2010)
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+N = 6.02e+023; // Avogadro's number, per mol
+T = 0.05; // Temperature of Cu, K
+E_F = 7; // Fermi energy of Cu, eV
+k = 1.38e-023; // Boltzmann constant, J/K
+h = 6.626e-034; // Planck's constant, Js
+theta_D = 348; // Debye temperature of Cu, K
+C_e = %pi^2*N*k^2*T/(2*E_F*e); // Electronic heat capacity of Cu, J/mol/K
+C_V = 12/5*%pi^4*N*k*(T/theta_D)^3; // Lattice heat capacity of Cu, J/mol/K
+printf("\nThe electronic heat capacity of Cu = %4.2e J/mol/K", C_e);
+printf("\nThe lattice heat capacity of Cu = %4.2e J/mol/K", C_V);
+
+// Result
+// The electronic heat capacity of Cu = 2.53e-005 J/mol/K
+// The lattice heat capacity of Cu = 5.76e-009 J/mol/K
diff --git a/1535/CH15/EX15.5/Ch15Ex5.sci b/1535/CH15/EX15.5/Ch15Ex5.sci new file mode 100755 index 000000000..7867bdeb1 --- /dev/null +++ b/1535/CH15/EX15.5/Ch15Ex5.sci @@ -0,0 +1,9 @@ +// Scilab Code Ex15.5: Page-324 (2010)
+T = 1; // For simplicity assume temperature to be unity, K
+R = 1; // For simplicity assume molar gas constant to be unity, J/mol/K
+theta_E = T; // Einstein temperature, K
+C_V = 3*R*(theta_E/T)^2*exp(theta_E/T)/(exp(theta_E/T)-1)^2; // Einstein lattice specific heat, J/mol/K
+printf("\nThe Einstein lattice specific heat, C_v = %4.2f X 3R", C_V/3);
+
+// Result
+// The Einstein lattice specific heat, C_v = 0.92 X 3R
\ No newline at end of file diff --git a/1535/CH15/EX15.6/Ch15Ex6.sci b/1535/CH15/EX15.6/Ch15Ex6.sci new file mode 100755 index 000000000..6e61d3bce --- /dev/null +++ b/1535/CH15/EX15.6/Ch15Ex6.sci @@ -0,0 +1,13 @@ +// Scilab Code Ex15.6: Page-324 (2010)
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+v = 2; // Valency of Zn atom
+N = v*6.02e+023; // Avogadro's number, per mol
+T = 300; // Temperature of Zn, K
+E_F = 9.38; // Fermi energy of Zn, eV
+k = 1.38e-023; // Boltzmann constant, J/K
+h = 6.626e-034; // Planck's constant, Js
+C_e = %pi^2*N*k^2*T/(2*E_F*e); // Electronic heat capacity of Zn, J/mol/K
+printf("\nThe molar electronic heat capacity of zinc = %5.3f J/mol/K", C_e);
+
+// Result
+// The molar electronic heat capacity of zinc = 0.226 J/mol/K
\ No newline at end of file |