summaryrefslogtreecommitdiff
path: root/1529/CH21
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1529/CH21
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1529/CH21')
-rwxr-xr-x1529/CH21/EX21.1/21_01.sce7
-rwxr-xr-x1529/CH21/EX21.10/21_10.sce12
-rwxr-xr-x1529/CH21/EX21.11/21_11.sce12
-rwxr-xr-x1529/CH21/EX21.12/21_12.sce13
-rwxr-xr-x1529/CH21/EX21.13/21_13.sce20
-rwxr-xr-x1529/CH21/EX21.14/21_14.sce16
-rwxr-xr-x1529/CH21/EX21.15/21_15.sce7
-rwxr-xr-x1529/CH21/EX21.16/21_16.sce6
-rwxr-xr-x1529/CH21/EX21.17/21_17.sce11
-rwxr-xr-x1529/CH21/EX21.18/21_18.sce11
-rwxr-xr-x1529/CH21/EX21.19/21_19.sce23
-rwxr-xr-x1529/CH21/EX21.2/21_02.sce6
-rwxr-xr-x1529/CH21/EX21.20/21_20.sce14
-rwxr-xr-x1529/CH21/EX21.21/21_21.sce6
-rwxr-xr-x1529/CH21/EX21.22/21_22.sce6
-rwxr-xr-x1529/CH21/EX21.23/21_23.sce6
-rwxr-xr-x1529/CH21/EX21.24/21_24.sce14
-rwxr-xr-x1529/CH21/EX21.25/21_25.sce13
-rwxr-xr-x1529/CH21/EX21.26/21_26.sce10
-rwxr-xr-x1529/CH21/EX21.27/21_27.sce14
-rwxr-xr-x1529/CH21/EX21.28/21_28.sce13
-rwxr-xr-x1529/CH21/EX21.29/21_29.sce15
-rwxr-xr-x1529/CH21/EX21.3/21_03.sce8
-rwxr-xr-x1529/CH21/EX21.4/21_04.sce10
-rwxr-xr-x1529/CH21/EX21.5/21_05.sce8
-rwxr-xr-x1529/CH21/EX21.6/21_06.sce12
-rwxr-xr-x1529/CH21/EX21.7/21_07.sce11
-rwxr-xr-x1529/CH21/EX21.9/21_09.sce15
28 files changed, 319 insertions, 0 deletions
diff --git a/1529/CH21/EX21.1/21_01.sce b/1529/CH21/EX21.1/21_01.sce
new file mode 100755
index 000000000..b4012bd79
--- /dev/null
+++ b/1529/CH21/EX21.1/21_01.sce
@@ -0,0 +1,7 @@
+//Chapter 21, Problem 1
+clc;
+n1=500; //primary turns
+n2=3000; //secondary turns
+v1=240; //primary voltage
+v2=(v1*n2)/n1; //secondary voltage
+printf("Secondary voltage = %f V",v2);
diff --git a/1529/CH21/EX21.10/21_10.sce b/1529/CH21/EX21.10/21_10.sce
new file mode 100755
index 000000000..7ddf8131b
--- /dev/null
+++ b/1529/CH21/EX21.10/21_10.sce
@@ -0,0 +1,12 @@
+//Chapter 21, Problem 10
+clc;
+f=50; //frequency
+n1=25; //primary turns
+n2=300; //secondary turns
+A=300e-4; //cross-sectional area of the core
+v1=250; //primary voltage
+phim=v1/(4.44*f*n1); //flux
+Bm=phim/A; //maximum flux density
+v2=v1*(n2/n1); //secondary voltage
+printf("(a) Maximum flux density= %.2f T\n\n",Bm);
+printf("(b) Secondary winding voltage = %d V",v2);
diff --git a/1529/CH21/EX21.11/21_11.sce b/1529/CH21/EX21.11/21_11.sce
new file mode 100755
index 000000000..4de18e079
--- /dev/null
+++ b/1529/CH21/EX21.11/21_11.sce
@@ -0,0 +1,12 @@
+//Chapter 21, Problem 11
+clc;
+f=50; //frequency
+v1=500; //primary voltage
+v2=100; //secondary voltage
+B=1.5; //maximum core flux density
+A=50e-4; //effective core cross-sectional area
+phim=B*A; //maximum flux
+n1=v1/(4.44*f*phim); //primary turns
+n2=v2/(4.44*f*phim); //secondary turns
+printf("Primary turns = %d turns\n\n",n1);
+printf("Seconadry turns = %d turns\n\n",n2);
diff --git a/1529/CH21/EX21.12/21_12.sce b/1529/CH21/EX21.12/21_12.sce
new file mode 100755
index 000000000..15169ce75
--- /dev/null
+++ b/1529/CH21/EX21.12/21_12.sce
@@ -0,0 +1,13 @@
+//Chapter 21, Problem 12
+clc;
+v1=4500; //primary voltage
+v2=225; //secondary voltage
+f=50; //frequency
+en=15; //e.m.f. per turn
+B=1.4; //maximum core flux density
+n1=v1/en; //primary turns
+n2=v2/en; //secondary turns
+phim=v1/(4.44*f*n1); //maximum flux
+A=phim/B; //effective core cross-sectional area
+printf("(a) Primary turns = %f\n\nSecondary turns = %f\n\n\n",n1,n2);
+printf("(b) cross-sectional area of the core = %f m2",A);
diff --git a/1529/CH21/EX21.13/21_13.sce b/1529/CH21/EX21.13/21_13.sce
new file mode 100755
index 000000000..d8e9a98f5
--- /dev/null
+++ b/1529/CH21/EX21.13/21_13.sce
@@ -0,0 +1,20 @@
+//Chapter 21, Problem 13, Figure 21.5
+clc
+n1=2000 //no of turns on primary
+n2=800 //no of turns on secondary
+i2=100 //secondary current in amperes
+i1=44 //current in amperes from phasor diagram
+i0=5 //no load current
+i3=40 //current from phaor diagram
+pf0=0.2 //power factor
+a1=37
+pf2=0.85
+i1=i2*n2/n1
+a2=acosd(pf2)
+a0=acosd(pf0)
+Icos=(i0*pf0)+(i3*pf2)
+Isin=(i0*sin(a0*%pi/180))+(i3*sin(a2*%pi/180))
+I1=sqrt(Isin^2+Icos^2)
+ta=atand(Isin/Icos)
+pf=cos(ta*%pi/180)
+printf("I1 = %.3f A\n\n Power factor = %.3f degree\n\n",I1,pf)
diff --git a/1529/CH21/EX21.14/21_14.sce b/1529/CH21/EX21.14/21_14.sce
new file mode 100755
index 000000000..28331aa51
--- /dev/null
+++ b/1529/CH21/EX21.14/21_14.sce
@@ -0,0 +1,16 @@
+//Chapter 21, Problem 14
+clc;
+n1=600; //primary turns
+n2=150; //secondary turns
+r1=0.25; //primary resistance
+r2=0.01; //secondary resistance
+x1=1; //leakage reactance
+x2=0.04;
+re=r1+r2*(n1/n2)^2; //equivalent resistance
+xe=x1+x2*(n1/n2)^2; //equivalent reactance
+ze=sqrt(re^2+xe^2); //equivalent impedance
+phie=acos(re/ze); //phase angle of the impedance
+printf("(a) Equivalent resistance = %.2f ohms\n\n",re);
+printf("(b) Equivalent reactance = %.2f ohms\n\n",xe);
+printf("(c) Equivalent impedance = %.2f ohms\n\n",ze);
+printf("(d) Phase angle of the impedance = %.2f deg",phie*180/%pi);
diff --git a/1529/CH21/EX21.15/21_15.sce b/1529/CH21/EX21.15/21_15.sce
new file mode 100755
index 000000000..6b1bcd11b
--- /dev/null
+++ b/1529/CH21/EX21.15/21_15.sce
@@ -0,0 +1,7 @@
+//Chapter 21, Problem 15
+clc;
+e1=200; //primary voltage
+e2=400; //secondary voltage
+v2=387.6; //secondary terminal voltage
+reg=((e2-v2)/e2)*100; //regulation
+printf("Regulation = %.1f percent",reg);
diff --git a/1529/CH21/EX21.16/21_16.sce b/1529/CH21/EX21.16/21_16.sce
new file mode 100755
index 000000000..699af44fe
--- /dev/null
+++ b/1529/CH21/EX21.16/21_16.sce
@@ -0,0 +1,6 @@
+//Chapter 21, Problem 16
+clc;
+reg=2.5; //regulation
+e2=240; //secondary voltage
+v2=240-((reg*e2)/100); //secondary terminal voltage
+printf("Load voltage = %d V",v2);
diff --git a/1529/CH21/EX21.17/21_17.sce b/1529/CH21/EX21.17/21_17.sce
new file mode 100755
index 000000000..65cfc0eac
--- /dev/null
+++ b/1529/CH21/EX21.17/21_17.sce
@@ -0,0 +1,11 @@
+//Chapter 21, Problem 17
+clc;
+vi=200e3; //rated transformer
+pf=0.85; //power factor
+lcu=1.5e3; //copper loss
+lfe=1e3; //iron loss
+po=vi*pf; //full-load output power
+lt=lcu+lfe; //total losses
+pi=po+lt; //input power
+Ef=(1-(lt/pi)); //efficiency
+printf("Transformer efficiency at full load = %f percent",Ef*100);
diff --git a/1529/CH21/EX21.18/21_18.sce b/1529/CH21/EX21.18/21_18.sce
new file mode 100755
index 000000000..db8ed5185
--- /dev/null
+++ b/1529/CH21/EX21.18/21_18.sce
@@ -0,0 +1,11 @@
+//Chapter 21, Problem 18
+clc;
+vi=200e3; //rated transformer
+pf=0.85; //power factor
+lcu=(1/2)^2*1.5e3; //copper loss
+lfe=1e3; //iron loss
+p0=(1/2)*vi*pf; //full-load output power
+lt=lcu+lfe; //total losses
+pi=p0+lt; //input power
+Ef=(1-(lt/pi)); //efficiency
+printf("Transformer efficiency at half load = %.3f percent",Ef*100);
diff --git a/1529/CH21/EX21.19/21_19.sce b/1529/CH21/EX21.19/21_19.sce
new file mode 100755
index 000000000..9fdf0a437
--- /dev/null
+++ b/1529/CH21/EX21.19/21_19.sce
@@ -0,0 +1,23 @@
+//Chapter 21, Problem 19
+clc
+k=400000 //transformer rating
+v1=5000 //primary current
+v2=320 //secondary current
+r1=0.5 //resistance in ohm
+r2=0.001 //resistance in ohm
+lfe=2500 //iron loss
+pf=0.85 //power factor
+i1=k/v1 //primary current
+i2=k/v2 //secondary current
+lcu=(i1^2*r1)+(i2^2*r2) //total copper loss
+lt=lcu+lfe //total loss
+pt=k*pf //total output power
+pi=pt+lt //input power
+n=(1-(lt/pi))*100 //efficiency
+lc=lcu*(1/2)^2 //total copper loss at half load
+lh=lc+lfe //total loss at half loss
+ph0=(1/2)*pt //output power at half load
+phi=(ph0+lh) //input power at half load
+n1=(1-(lh/phi))*100 //efficiency
+printf("(a) Efficiency on full load = %.3f percent\n\n",n)
+printf("(b) Efficiency at half load = %.3f percent\n\n",n1)
diff --git a/1529/CH21/EX21.2/21_02.sce b/1529/CH21/EX21.2/21_02.sce
new file mode 100755
index 000000000..2dd9271cf
--- /dev/null
+++ b/1529/CH21/EX21.2/21_02.sce
@@ -0,0 +1,6 @@
+//Chapter 21, Problem 2
+clc;
+N=2/7; //turns ratio
+v1=240; //primary voltage
+v2=v1/N; //secondary voltage
+printf("Output voltage = %f V",v2);
diff --git a/1529/CH21/EX21.20/21_20.sce b/1529/CH21/EX21.20/21_20.sce
new file mode 100755
index 000000000..f8f27ea68
--- /dev/null
+++ b/1529/CH21/EX21.20/21_20.sce
@@ -0,0 +1,14 @@
+//Chapter 21, Problem 20
+clc
+c=4e3 //coper loss
+p=500e3 //transformer rating
+r=2.5e3 //iron loss
+pf=0.75 //power factor
+x=sqrt(r/c)
+eff=x*p
+los=2*r
+po=eff*pf
+pi=po-los
+n=(1-(los/pi))*100
+printf("(a) The Output KVA at maximum efficiency = %.2f kVA\n\n",eff/1000)
+printf("(b) Maximum efficiency = %.2f percent",n)
diff --git a/1529/CH21/EX21.21/21_21.sce b/1529/CH21/EX21.21/21_21.sce
new file mode 100755
index 000000000..7f38ff555
--- /dev/null
+++ b/1529/CH21/EX21.21/21_21.sce
@@ -0,0 +1,6 @@
+//Chapter 21, Problem 21
+clc;
+N=4/1; //turns ratio
+Rl=100; //load resistance
+R1=N^2*Rl; //equivalent input resistance
+printf("Equivalent input resistance = %d ohms",R1);
diff --git a/1529/CH21/EX21.22/21_22.sce b/1529/CH21/EX21.22/21_22.sce
new file mode 100755
index 000000000..92d3094cd
--- /dev/null
+++ b/1529/CH21/EX21.22/21_22.sce
@@ -0,0 +1,6 @@
+//Chapter 21, Problem 22
+clc;
+R1=112; //equivalent input resistance
+Rl=7; //load resistance
+N=sqrt(R1/Rl); //turns ratio
+printf("Optimum turns ratio = %d : 1 ",N);
diff --git a/1529/CH21/EX21.23/21_23.sce b/1529/CH21/EX21.23/21_23.sce
new file mode 100755
index 000000000..b3923cf17
--- /dev/null
+++ b/1529/CH21/EX21.23/21_23.sce
@@ -0,0 +1,6 @@
+//Chapter 21, Problem 23
+clc;
+R1=150; //equivalent input resistance
+N=5; //turns ratio
+Rl=R1/(N^2); //load resistance
+printf("Optimum value of load resistance = %d ohm",Rl);
diff --git a/1529/CH21/EX21.24/21_24.sce b/1529/CH21/EX21.24/21_24.sce
new file mode 100755
index 000000000..55fac1462
--- /dev/null
+++ b/1529/CH21/EX21.24/21_24.sce
@@ -0,0 +1,14 @@
+//Chapter 21, Problem 24
+clc;
+v1=220; //primary voltage
+v2=1760; //secondary voltage
+R=2; //cable resistance
+Rl=1.28e3; //load across secondary winding
+N=v1/v2; //turns ratio
+R1=N^2*Rl; //equivalent input resistance
+Rin=R+R1; //total input resistance,
+I1=v1/Rin; //primary current
+I2=I1*N; //secondary current
+P=I2^2*Rl; //power dissipated
+printf("(a) Primary current = %d A\n\n",I1);
+printf("(b) Power dissipated in load resistor = %d W",P);
diff --git a/1529/CH21/EX21.25/21_25.sce b/1529/CH21/EX21.25/21_25.sce
new file mode 100755
index 000000000..bd528915f
--- /dev/null
+++ b/1529/CH21/EX21.25/21_25.sce
@@ -0,0 +1,13 @@
+//Chapter 21, Problem 25
+clc;
+V=24; //ac source
+R1=15e3; //input resistance
+N=25/1; //turns ratio
+Rin=15e3; //internal resistance
+Rl=R1*(1/N)^2; //load resistance
+Rt=Rin+R1; //total input resistance
+I1=V/Rt; //primary current
+I2=I1*N; //secondary current
+P=I2^2*Rl; //power dissipated
+printf("(a) Load resistance = %d ohms\n\n",Rl);
+printf("(b) Power dissipated in the load = %.1f mW",P*1000);
diff --git a/1529/CH21/EX21.26/21_26.sce b/1529/CH21/EX21.26/21_26.sce
new file mode 100755
index 000000000..bd62db0c9
--- /dev/null
+++ b/1529/CH21/EX21.26/21_26.sce
@@ -0,0 +1,10 @@
+//Chapter 21, Problem 26
+clc;
+V1=320; //primary voltage
+V2=250; //secondary voltage
+Rg=20e3; //rating
+I1=Rg/V1; //primary current
+I2=Rg/V2; //secondary current
+I=I2-I1; //current in common part of the winding
+printf("Primary current = %.1f A\n\nSecondary current = %d A\n\n\n",I1,I2);
+printf("Hence current in common part of the winding = %.1f A",I);
diff --git a/1529/CH21/EX21.27/21_27.sce b/1529/CH21/EX21.27/21_27.sce
new file mode 100755
index 000000000..b3efedd00
--- /dev/null
+++ b/1529/CH21/EX21.27/21_27.sce
@@ -0,0 +1,14 @@
+//Chapter 21, Problem 27
+clc;
+v1=200; //primary voltage of transformer 1
+v2=150; //secondary voltage of transformer 1
+v3=500; //primary voltage of transformer 2
+v4=100; //secondary voltage of transformer 2
+x=v2/v1;
+V=(1-x)*100;
+y=v4/v3;
+W=(1-y)*100;
+printf("(a) 200V:150V transformer,\n Volume of copper = %d percent\n",V);
+disp("Hence the saving is 75%");
+printf("\n\n(b) 500V:100V transformer,\nVolume of copper = %d percent\n",W);
+disp("Hence the saving is 20%.");
diff --git a/1529/CH21/EX21.28/21_28.sce b/1529/CH21/EX21.28/21_28.sce
new file mode 100755
index 000000000..e83d362b5
--- /dev/null
+++ b/1529/CH21/EX21.28/21_28.sce
@@ -0,0 +1,13 @@
+//Chapter 21, Problem 28
+clc;
+n1=500; //primary turns
+n2=50; //secondary turns
+v1=2.4e3; //supply voltage
+Vp=v1/sqrt(3); //primary phase voltage
+Vp2=Vp*(n2/n1); //secondary phase voltage
+Vp3=v1*(n2/n1); //secondary phase voltage 2
+Vl=sqrt(3)*Vp3; //secondary line voltage
+printf("(a) For star connection\n")
+printf("Secondary line voltage = %.2f V\n\n",Vp2);
+printf("(b) For delta connection\n");
+printf("Secondary line voltage = %.2f V",Vl);
diff --git a/1529/CH21/EX21.29/21_29.sce b/1529/CH21/EX21.29/21_29.sce
new file mode 100755
index 000000000..f409b696e
--- /dev/null
+++ b/1529/CH21/EX21.29/21_29.sce
@@ -0,0 +1,15 @@
+//Chapter 21, Problem 29
+clc;
+N1=1; //primary turns
+N2=60; //secondary turns
+I1=300; //primary current
+Ra=0.15; //ammeter resistance
+R2=0.25; //secondary winding resistance
+I2=I1*(N1/N2); //secondary current
+V2=I2*Ra; //secondary voltage
+Rt=Ra+R2; //total resistance of secondary circuit
+e2=I2*Rt; //induced e.m.f. in secondary
+l=e2*I2; //load on secondary
+printf("(a) Reading on the ammeter = %d A\n\n",I2);
+printf("(b) P.d. across the ammeter = %.2f V\n\n",V2);
+printf("(c) Total load (in VA) on the secondary = %d VA",l);
diff --git a/1529/CH21/EX21.3/21_03.sce b/1529/CH21/EX21.3/21_03.sce
new file mode 100755
index 000000000..c004d1341
--- /dev/null
+++ b/1529/CH21/EX21.3/21_03.sce
@@ -0,0 +1,8 @@
+//Chapter 21, Problem 3
+clc;
+N=8/1; //turns ratio
+i1=3; //primary current
+v1=240; //primary voltage
+v2=v1/N; //secondary voltage
+i2=N*i1; //secondary current
+printf("Secondary voltage = %f V\n\nSecondary current = %f A",v2,i2);
diff --git a/1529/CH21/EX21.4/21_04.sce b/1529/CH21/EX21.4/21_04.sce
new file mode 100755
index 000000000..5f8b72483
--- /dev/null
+++ b/1529/CH21/EX21.4/21_04.sce
@@ -0,0 +1,10 @@
+//Chapter 21, Problem 4
+clc;
+v1=240; //primary voltage
+v2=12; //secondary voltage
+P=150; //power
+N=v1/v2; //turns ratio
+i2=P/v2; //secondary current
+i1=i2/N; //primary current
+printf("Transformer turns ratio = %f\n\n",N);
+printf("Current = %f A",i1);
diff --git a/1529/CH21/EX21.5/21_05.sce b/1529/CH21/EX21.5/21_05.sce
new file mode 100755
index 000000000..b4e9af7c0
--- /dev/null
+++ b/1529/CH21/EX21.5/21_05.sce
@@ -0,0 +1,8 @@
+//Chapter 21, Problem 5
+clc;
+v2=120; //secondary voltage
+r2=12; //resistance in ohm
+i1=4; //primary current
+i2=v2/r2; //secondary current
+v1=v2*(i2/i1); //primary voltage
+printf("Primary voltage = %f V",v1);
diff --git a/1529/CH21/EX21.6/21_06.sce b/1529/CH21/EX21.6/21_06.sce
new file mode 100755
index 000000000..8a836acdf
--- /dev/null
+++ b/1529/CH21/EX21.6/21_06.sce
@@ -0,0 +1,12 @@
+//Chapter 21, Problem 6
+clc;
+N=10; //turns ratio
+v1=2.5e3; //primary voltage
+P=5000; //power
+v2=v1/N; //secondary voltage
+i2=P/v2; //secondary current
+Rl=v2/i2; //resistance in ohm
+i1=i2/N; //primary current
+printf("(a) Full-load secondary current = %d A\n\n",i2);
+printf("(b) Minimum value of load resistance = %.1f ohms\n\n",Rl);
+printf("(c) Primary current = %d A\n\n",i1);
diff --git a/1529/CH21/EX21.7/21_07.sce b/1529/CH21/EX21.7/21_07.sce
new file mode 100755
index 000000000..9c0329ee7
--- /dev/null
+++ b/1529/CH21/EX21.7/21_07.sce
@@ -0,0 +1,11 @@
+//Chapter 21, Problem 7
+clc;
+v1=2400; //primary voltage
+v2=400; //secondary voltage
+i0=0.5; //no load current
+Pl=400; //power
+phi=acos(v2/(v1*i0)); //phase
+im=i0*sin(phi); //magnetising component
+ic=i0*cos(phi); //core loss component
+printf("Magnetising loss component = %.3f A\n\n",im);
+printf("Core loss component = %.3f A",ic);
diff --git a/1529/CH21/EX21.9/21_09.sce b/1529/CH21/EX21.9/21_09.sce
new file mode 100755
index 000000000..6fc369ea6
--- /dev/null
+++ b/1529/CH21/EX21.9/21_09.sce
@@ -0,0 +1,15 @@
+//Chapter 21, Problem 9
+clc;
+v1=4000; //primary voltage
+v2=200; //secondary voltage
+f=50; //frequency
+n2=100; //secondary turns
+R=100e3; //resistance in ohm
+E=v2;
+i1=R/v1; //primary current
+i2=R/v2; //secondary current
+n1=(v1/v2)*n2; //primary turns
+phim=E/(4.44*f*n2); //flux max
+printf("(a) Primary current = %f A\n\nSecondary currenr = %f A\n\n\n",i1,i2);
+printf("(b) Primary turns = %f\n\n\n",n1);
+printf("(c) maximum value of the flux = %f mWb",phim*1000);