summaryrefslogtreecommitdiff
path: root/1445/CH8/EX8.17/Ex8_17.sce
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:38:01 +0530
committerprashantsinalkar2017-10-10 12:38:01 +0530
commitf35ea80659b6a49d1bb2ce1d7d002583f3f40947 (patch)
treeeb72842d800ac1233e9d890e020eac5fd41b0b1b /1445/CH8/EX8.17/Ex8_17.sce
parent7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (diff)
downloadScilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.gz
Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.bz2
Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.zip
updated the code
Diffstat (limited to '1445/CH8/EX8.17/Ex8_17.sce')
-rw-r--r--1445/CH8/EX8.17/Ex8_17.sce37
1 files changed, 12 insertions, 25 deletions
diff --git a/1445/CH8/EX8.17/Ex8_17.sce b/1445/CH8/EX8.17/Ex8_17.sce
index 6e4141500..0ca2818cc 100644
--- a/1445/CH8/EX8.17/Ex8_17.sce
+++ b/1445/CH8/EX8.17/Ex8_17.sce
@@ -1,58 +1,45 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 17
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 17");
-//200 V DC shunt motor of 1000 rpm
//VARIABLE INITIALIZATION
v_t=200; //in Volts
-I_l=22; //line current in Amperes
+I_l=22; //in Amperes
N1=1000; //in rpm
-r_a=0.1; //armature resistancein Ohms
-r_f=100; //field resistance in Ohms
-N2=800; //new speed in rpm
+r_a=0.1; //in Ohms
+r_f=100; //in Ohms
+N2=800; //in rpm
//SOLUTION
//solution (i)
-//load torque is independent of speed, the torque is constant at both speeds
-//T dir prop phi1.Ia1 dir prop phi2.Ia2
-//Therefore we get
-//phi1.Ia1=phi2.Ia2 (since phi1=phi2)
-// or Ia1=Ia2
-I_f=v_t/r_f; // field current
-I_a1=I_l-I_f; // armature current
-E_a1=v_t-(I_a1*r_a); // counter emf
+I_f=v_t/r_f;
+I_a1=I_l-I_f;
+E_a1=v_t-(I_a1*r_a);
//on rearranging the equation E_a2:E_a1=N2:N1, where E_a2=v_t-I_a1*(r_a+r_s) and E_a1=v_t-(I_a1*r_a), we get,
r_s1=((v_t - ((N2*E_a1)/N1))/I_a1)-r_a;
-disp(sprintf("(i) When the load torque is independent of speed, the additional resistance is %.2f Ω",r_s1));
+disp(sprintf("(i) When the load torque is independent of speed, the additional resistance is %f Ω",r_s1));
//solution (ii)
-//Load torque Tl is proportional to N
-//But electromagnetic torque Te=k.phi.Ia
-//therefore,
-//k.phi1.Ia1 dir prop N1
-//k.phi2.Ia2 dir prop n2
-//hence we get (as phi1=phi2)
I_a2=(N2/N1)*I_a1;
//on rearranging the equation E_a2:E_a1=N2:N1, where E_a2=v_t-I_a2*(r_a+r_s) and E_a1=v_t-(I_a1*r_a), we get,
r_s2=((v_t - ((N2*E_a1)/N1))/I_a2)-r_a;
-disp(sprintf("(ii)When the load torque is proportional to speed, the additional resistance is %.1f Ω",r_s2));
+disp(sprintf("(ii)When the load torque is proportional to speed, the additional resistance is %f Ω",r_s2));
//solution (iii)
-//The load Torque Tl dir prop N^2 dir prop phi.Ia
I_a2=(N2^2/N1^2)*I_a1;
//on rearranging the equation E_a2:E_a1=N2:N1, where E_a2=v_t-I_a2*(r_a+r_s) and E_a1=v_t-(I_a1*r_a), we get,
r_s3=((v_t - ((N2*E_a1)/N1))/I_a2)-r_a;
-disp(sprintf("(iii)When the load torque varies as the square of speed, the additional resistance is %.2f Ω",r_s3));
+disp(sprintf("(iii)When the load torque varies as the square of speed, the additional resistance is %f Ω",r_s3));
//solution (iv)
-//The load Torque Tl dir prop N^3 dir prop phi.Ia
I_a2=(N2^3/N1^3)*I_a1;
//on rearranging the equation E_a2:E_a1=N2:N1, where E_a2=v_t-I_a2*(r_a+r_s) and E_a1=v_t-(I_a1*r_a), we get,
r_s4=((v_t - ((N2*E_a1)/N1))/I_a2)-r_a;
-disp(sprintf("(iv)When the load torque varies as the cube of speed, the additional resistance is %.2f Ω",r_s4));
+disp(sprintf("(iv)When the load torque varies as the cube of speed, the additional resistance is %f Ω",r_s4));
//END