diff options
author | prashantsinalkar | 2017-10-10 12:38:01 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:38:01 +0530 |
commit | f35ea80659b6a49d1bb2ce1d7d002583f3f40947 (patch) | |
tree | eb72842d800ac1233e9d890e020eac5fd41b0b1b /1445/CH8/EX8.17/Ex8_17.sce | |
parent | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (diff) | |
download | Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.gz Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.bz2 Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.zip |
updated the code
Diffstat (limited to '1445/CH8/EX8.17/Ex8_17.sce')
-rw-r--r-- | 1445/CH8/EX8.17/Ex8_17.sce | 37 |
1 files changed, 12 insertions, 25 deletions
diff --git a/1445/CH8/EX8.17/Ex8_17.sce b/1445/CH8/EX8.17/Ex8_17.sce index 6e4141500..0ca2818cc 100644 --- a/1445/CH8/EX8.17/Ex8_17.sce +++ b/1445/CH8/EX8.17/Ex8_17.sce @@ -1,58 +1,45 @@ //CHAPTER 8- DIRECT CURRENT MACHINES //Example 17 +clc; disp("CHAPTER 8"); disp("EXAMPLE 17"); -//200 V DC shunt motor of 1000 rpm //VARIABLE INITIALIZATION v_t=200; //in Volts -I_l=22; //line current in Amperes +I_l=22; //in Amperes N1=1000; //in rpm -r_a=0.1; //armature resistancein Ohms -r_f=100; //field resistance in Ohms -N2=800; //new speed in rpm +r_a=0.1; //in Ohms +r_f=100; //in Ohms +N2=800; //in rpm //SOLUTION //solution (i) -//load torque is independent of speed, the torque is constant at both speeds -//T dir prop phi1.Ia1 dir prop phi2.Ia2 -//Therefore we get -//phi1.Ia1=phi2.Ia2 (since phi1=phi2) -// or Ia1=Ia2 -I_f=v_t/r_f; // field current -I_a1=I_l-I_f; // armature current -E_a1=v_t-(I_a1*r_a); // counter emf +I_f=v_t/r_f; +I_a1=I_l-I_f; +E_a1=v_t-(I_a1*r_a); //on rearranging the equation E_a2:E_a1=N2:N1, where E_a2=v_t-I_a1*(r_a+r_s) and E_a1=v_t-(I_a1*r_a), we get, r_s1=((v_t - ((N2*E_a1)/N1))/I_a1)-r_a; -disp(sprintf("(i) When the load torque is independent of speed, the additional resistance is %.2f Ω",r_s1)); +disp(sprintf("(i) When the load torque is independent of speed, the additional resistance is %f Ω",r_s1)); //solution (ii) -//Load torque Tl is proportional to N -//But electromagnetic torque Te=k.phi.Ia -//therefore, -//k.phi1.Ia1 dir prop N1 -//k.phi2.Ia2 dir prop n2 -//hence we get (as phi1=phi2) I_a2=(N2/N1)*I_a1; //on rearranging the equation E_a2:E_a1=N2:N1, where E_a2=v_t-I_a2*(r_a+r_s) and E_a1=v_t-(I_a1*r_a), we get, r_s2=((v_t - ((N2*E_a1)/N1))/I_a2)-r_a; -disp(sprintf("(ii)When the load torque is proportional to speed, the additional resistance is %.1f Ω",r_s2)); +disp(sprintf("(ii)When the load torque is proportional to speed, the additional resistance is %f Ω",r_s2)); //solution (iii) -//The load Torque Tl dir prop N^2 dir prop phi.Ia I_a2=(N2^2/N1^2)*I_a1; //on rearranging the equation E_a2:E_a1=N2:N1, where E_a2=v_t-I_a2*(r_a+r_s) and E_a1=v_t-(I_a1*r_a), we get, r_s3=((v_t - ((N2*E_a1)/N1))/I_a2)-r_a; -disp(sprintf("(iii)When the load torque varies as the square of speed, the additional resistance is %.2f Ω",r_s3)); +disp(sprintf("(iii)When the load torque varies as the square of speed, the additional resistance is %f Ω",r_s3)); //solution (iv) -//The load Torque Tl dir prop N^3 dir prop phi.Ia I_a2=(N2^3/N1^3)*I_a1; //on rearranging the equation E_a2:E_a1=N2:N1, where E_a2=v_t-I_a2*(r_a+r_s) and E_a1=v_t-(I_a1*r_a), we get, r_s4=((v_t - ((N2*E_a1)/N1))/I_a2)-r_a; -disp(sprintf("(iv)When the load torque varies as the cube of speed, the additional resistance is %.2f Ω",r_s4)); +disp(sprintf("(iv)When the load torque varies as the cube of speed, the additional resistance is %f Ω",r_s4)); //END |