summaryrefslogtreecommitdiff
path: root/1445/CH6
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /1445/CH6
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '1445/CH6')
-rw-r--r--1445/CH6/EX6.1/ch6_ex_1.sce59
-rw-r--r--1445/CH6/EX6.2/ch6_ex_2.sce50
-rw-r--r--1445/CH6/EX6.3/ch6_ex_3.sce49
-rw-r--r--1445/CH6/EX6.4/ch6_ex_4.sce41
-rw-r--r--1445/CH6/EX6.5/ch6_ex_5.sce43
5 files changed, 242 insertions, 0 deletions
diff --git a/1445/CH6/EX6.1/ch6_ex_1.sce b/1445/CH6/EX6.1/ch6_ex_1.sce
new file mode 100644
index 000000000..758205da9
--- /dev/null
+++ b/1445/CH6/EX6.1/ch6_ex_1.sce
@@ -0,0 +1,59 @@
+//CHAPTER 6- MAGNETIC CIRCUITS
+//Example 1
+
+disp("CHAPTER 6");
+disp("EXAMPLE 1");
+
+//VARIABLE INITIALIZATION
+lA=17/100; //length of part A in m
+l=3/100; //in m
+lg=2/1000; //length of air-gap in m
+N=1000; //number of turns
+AB=10/100; //in m
+BC=20/100; //in m
+CD=10/100; //in m
+I=1; //exciting current in Amperes
+murA=1000; //relative permeability of part A
+murB=1200; //relative permeability of part B
+mu0=4*%pi*10^(-7); //absolute permeability in Henry/m
+
+//SOLUTION
+
+//solution (i)
+ar=l*l;
+rA=lA/(mu0*murA*ar);
+disp(sprintf("(i) Reluctance of part A is %E AT/Wb",rA));
+
+lB=(AB-(l/2))+(BC-l)+(CD-(l/2));
+rB=lB/(mu0*murB*ar);
+disp(sprintf("Reluctance of part B is %E AT/Wb",rB));
+
+//solution (ii)
+lg=2*lg;
+murg=1;
+rg=lg/(mu0*murg*ar);
+disp(sprintf("(ii) Reluctance of the two air gaps is %E AT/Wb",rg));
+
+//solution (iii)
+rT=rA+rB+rg;
+disp(sprintf("(iii) Total reluctance is %E AT/Wb",rT));
+
+//solution (iv)
+mmf=N*I;
+disp(sprintf("(iv) MMF is %d AT",mmf));
+
+//solution (v)
+totFlux=mmf/rT;
+disp(sprintf("(v) Total flux is %E Wb",totFlux));
+
+
+//solution (vi)
+b=totFlux/ar;
+disp(sprintf("(vi) Flux density is %f Wb/m^2",b));
+
+//Answers of (v) and (vi) do not match due to calculation mistake in the book
+
+//END
+
+
+
diff --git a/1445/CH6/EX6.2/ch6_ex_2.sce b/1445/CH6/EX6.2/ch6_ex_2.sce
new file mode 100644
index 000000000..5c6bd3b41
--- /dev/null
+++ b/1445/CH6/EX6.2/ch6_ex_2.sce
@@ -0,0 +1,50 @@
+//CHAPTER 6- MAGNETIC CIRCUITS
+//Example 2
+
+disp("CHAPTER 6");
+disp("EXAMPLE 2");
+
+//VARIABLE INITIALIZATION
+dr=25/100; //diameter of steel ring in m
+ds=3/100; //diameter of circular section in m
+lg=1.5/1000; //length of air-gap in m
+N=700; //number of turns
+mu0=4*%pi*10^(-7); //absolute permeability in Henry/m
+I=2; //in Amperes
+
+//SOLUTION
+
+//solution (i)
+mmf=N*I;
+disp(sprintf("(i) MMF is %d AT", mmf));
+
+//solution (ii)
+netMMF=(mmf-(0.35*mmf)); //mmf taken by iron path is 35% of total mmf
+b=(mu0*netMMF)/lg; //phi=b*area, r=lg/(mu0*area) & mmf=phi*r => mmf=(b*lg)/mu0 => b=(mmf*mu0)/lg
+disp(sprintf("(ii) The flux density of the air gap is %E Wb/m^2", b));
+
+//solution (iii)
+ar=%pi*((ds/2)^2); //area of cross-section of circular section
+phi=ar*b;
+disp(sprintf("(iii) The magnetic flux is %E Wb",phi));
+
+//solution (iv)
+rt=mmf/phi;
+disp(sprintf("(iv) The total reluctance is %E AT/wb",rt));
+
+//solution (v)
+rg=lg/(mu0*ar); //reluctance of air gap
+rs=rt-rg; //reluctance of steel
+lr=%pi*dr; //circumference of ring
+mur=lr/(mu0*rs*ar);
+disp(sprintf("(v) The relative permeability of the steel ring is %E",mur));
+
+//solution (vi)
+disp(sprintf("(vi) Reluctance of steel is %E AT/Wb",rs));
+
+//END
+
+
+
+
+
diff --git a/1445/CH6/EX6.3/ch6_ex_3.sce b/1445/CH6/EX6.3/ch6_ex_3.sce
new file mode 100644
index 000000000..f17dfaefc
--- /dev/null
+++ b/1445/CH6/EX6.3/ch6_ex_3.sce
@@ -0,0 +1,49 @@
+//CHAPTER 6- MAGNETIC CIRCUITS
+//Example 3
+
+disp("CHAPTER 6");
+disp("EXAMPLE 3");
+
+//VARIABLE INITIALIZATION
+lg1=0.025/100; //length of 1st air-gap in m
+a1=(1*1)/10000; //in m^2
+lg2=0.02/100; //length of 2nd air-gap in m
+a2=(1*1)/10000; //in m^2
+lg3=0.02/100; //length of 3rd air-gap in m
+a3=(2*1)/10000; //in m^2
+phi=0.75/1000; //in Wb
+lc1=0.5; //length through outer limb in m
+lc2=0.5; //length through outer limb in m
+lc3=0.2; //length through central limb in m
+mu0=4*%pi*10^(-7); //absolute permeability in Henry/m
+
+//SOLUTUION
+
+//solution (a): when mur=infinity i.e., no mmf drops in any member of the core
+rg1=lg1/(mu0*a1); //reluctance of 1st air-gap
+rg2=lg2/(mu0*a2); //reluctance of 2nd air-gap
+rg3=lg3/(mu0*a3); //reluctance of 3rd air-gap
+rgeq=(rg1*rg2)/(rg1+rg2); //rgeq=rg2||rg3
+mmf1=phi*(rgeq+rg3);
+mmf1=round(mmf1); //to round off the value
+disp(sprintf("(a) MMF of the exciting coil when permeability is infinity is %d AT",mmf1));
+
+//solution (b): when mur=5000 i.e., reluctance of magnetic core must be considered
+mur=5000;
+rc1=lc1/(mu0*mur*a1); //reluctance of first path in the core
+rc2=lc2/(mu0*mur*a2); //reluctance of second path in the core
+rc3=lc3/(mu0*mur*a3); //reluctance of third path in the core
+r1=rg1+rc1;
+r2=rg2+rc2;
+r3=rg3+rc3;
+req=(r1*r2)/(r1+r2);
+totr=req+r3;
+mmf2=phi*totr;
+mmf2=round(mmf2);
+disp(sprintf("(b) MMF of the exciting coil when permeability is 5000 is %d AT",mmf2));
+
+//END
+
+
+
+
diff --git a/1445/CH6/EX6.4/ch6_ex_4.sce b/1445/CH6/EX6.4/ch6_ex_4.sce
new file mode 100644
index 000000000..957c97a28
--- /dev/null
+++ b/1445/CH6/EX6.4/ch6_ex_4.sce
@@ -0,0 +1,41 @@
+//CHAPTER 6- MAGNETIC CIRCUITS
+//Example 4
+
+disp("CHAPTER 6");
+disp("EXAMPLE 4");
+
+//VARIABLE INITIALIZATION
+di=10; //diameter of iron ring in cm
+dr=1.5; //diameter of iron rod in cm
+mui=900; //relative permeability of rod
+mu0=4*%pi*10^(-7); //absolute permeability in Henry/m
+lg=5/10; //length of air-gap in cm
+N=400; //number of turns
+I=3.4; //current through the winding in Amperes
+
+//SOLUTION
+li=(di*%pi)-lg; //length of iron path
+area=((dr^2)*%pi)/4; //area of iron cross-section
+
+//solution (a)
+mmf=(4*%pi*N*I)/10; //in gilberts, since 1 AT=(4*pi)/10
+mmf=round(mmf); //to round off the value
+disp(sprintf("(a) MMF is %d Gilberts",mmf));
+
+//solution (b)
+//tot reluctance = iron reluctance + air gap reluctance(mur=1 for air)
+totR=(li/(area*mu0*mui))+(lg/(area*mu0*1));
+disp(sprintf("(b) The total reluctance is %E Gilberts/Maxwell",totR));
+
+//solution (c)
+phi=mmf/totR;
+disp(sprintf("(c) The flux in the circuit is %f Maxwell",phi));
+
+//solution (d)
+b=phi/area;
+disp(sprintf("(d) The flux density in the circuit is %f Gauss",b));
+
+//Answers of (b), (c) & (d) are different because absolute permeability is not included in (b)
+
+//END
+
diff --git a/1445/CH6/EX6.5/ch6_ex_5.sce b/1445/CH6/EX6.5/ch6_ex_5.sce
new file mode 100644
index 000000000..f1c1e5afc
--- /dev/null
+++ b/1445/CH6/EX6.5/ch6_ex_5.sce
@@ -0,0 +1,43 @@
+//CHAPTER 6- MAGNETIC CIRCUITS
+//Example 5
+
+disp("CHAPTER 6");
+disp("EXAMPLE 5");
+
+//VARIABLE INITIALIZATION
+li=100/100; //length of iron part in m
+ls=200/100; //length of steel part in m
+lg=1/100; //length of air gap in m
+ai=20/10000; //cross-sectional area of iron in m^2
+as=10/10000; //cross-sectional area of steel in m^2
+ag=20/10000; //cross-sectional area of air-gap in m^2
+muRi=300; //relative permeability of iron
+muRs=900; //relative permeability of steel
+muRg=1; //relative permeability of air
+N=170; //number of turns
+phi=9000*10^(-8); //flux in Wb (1 line = 10^(-8) Wb)
+lkg=1.2; //leakage coefficient
+mu0=4*%pi*10^(-7); //absolute permeability in Henry/m
+
+//SOLUTION
+rg=lg/(mu0*muRg*ag);
+mg=rg*phi;
+mg=round(mg); //to round off the value
+disp(sprintf("MMF of the air gap is %d AT",mg));
+
+ri=li/(mu0*muRi*ai);
+mi=lkg*ri*phi;
+mi=round(mi);
+disp(sprintf("MMF of iron is %d AT",mi));
+
+rs=ls/(mu0*muRs*as);
+ms=lkg*rs*phi;
+ms=round(ms);
+disp(sprintf("MMF of cast steel is %d AT",ms));
+
+totMMF=mg+mi+ms;
+I=totMMF/N;
+disp(sprintf("Current through the coil is %f A",I));
+
+//END
+