blob: f1c1e5afca9184a2393b9d6d32890a536f93578e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
//CHAPTER 6- MAGNETIC CIRCUITS
//Example 5
disp("CHAPTER 6");
disp("EXAMPLE 5");
//VARIABLE INITIALIZATION
li=100/100; //length of iron part in m
ls=200/100; //length of steel part in m
lg=1/100; //length of air gap in m
ai=20/10000; //cross-sectional area of iron in m^2
as=10/10000; //cross-sectional area of steel in m^2
ag=20/10000; //cross-sectional area of air-gap in m^2
muRi=300; //relative permeability of iron
muRs=900; //relative permeability of steel
muRg=1; //relative permeability of air
N=170; //number of turns
phi=9000*10^(-8); //flux in Wb (1 line = 10^(-8) Wb)
lkg=1.2; //leakage coefficient
mu0=4*%pi*10^(-7); //absolute permeability in Henry/m
//SOLUTION
rg=lg/(mu0*muRg*ag);
mg=rg*phi;
mg=round(mg); //to round off the value
disp(sprintf("MMF of the air gap is %d AT",mg));
ri=li/(mu0*muRi*ai);
mi=lkg*ri*phi;
mi=round(mi);
disp(sprintf("MMF of iron is %d AT",mi));
rs=ls/(mu0*muRs*as);
ms=lkg*rs*phi;
ms=round(ms);
disp(sprintf("MMF of cast steel is %d AT",ms));
totMMF=mg+mi+ms;
I=totMMF/N;
disp(sprintf("Current through the coil is %f A",I));
//END
|