summaryrefslogtreecommitdiff
path: root/1309/CH6/EX6.6/ch6_6.sce
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1309/CH6/EX6.6/ch6_6.sce
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1309/CH6/EX6.6/ch6_6.sce')
-rwxr-xr-x1309/CH6/EX6.6/ch6_6.sce38
1 files changed, 38 insertions, 0 deletions
diff --git a/1309/CH6/EX6.6/ch6_6.sce b/1309/CH6/EX6.6/ch6_6.sce
new file mode 100755
index 000000000..7a2076bf7
--- /dev/null
+++ b/1309/CH6/EX6.6/ch6_6.sce
@@ -0,0 +1,38 @@
+clc;
+clear;
+printf("\t\t\tChapter6_example6\n\n\n");
+// determibation of heat gained
+// air properties to be calculated at T=(72+45)/2=58.5 degree Fahrenheit
+// properties at T=58.5 degree fahrenheit from appendix table D1
+p = 0.077; // density in lbm/ft^3
+cp = 0.240; // specific heat in BTU/(lbm.degree Rankine)
+v = 15.28e-5; // viscosity in ft^2/s
+kf = 0.0146; // thermal conductivity in BTU/(hr.ft."R)
+a = 0.776; // diffusivity in ft^2/hr
+Pr = 0.711; // prandtl number
+D=7/12; // diameter in ft
+L=40; // length in ft
+Tbo=72; // outlet temperature in degree Fahrenheit
+Tbi=45; // inlet temperature in degree Fahrenheit
+A=%pi*(D^2)/4; // cross sectional area of duct in ft^2
+// density at outlet temperature in lbm/ft^3
+rou_o=.0748;
+V=10; // average velocity in ft/s
+mass_flow=rou_o*A*V;
+printf("\nThe mass flow rate is %.1f lbm/s",mass_flow);
+// average velocity evaluated by using the average bulk temperature
+V_avg=mass_flow/(p*A);
+printf("\nThe average velocity evaluated by using the average bulk temperature is %.2f ft/s",V_avg);
+Re=(V_avg*D)/v;
+printf("\nThe Reynolds number for the flow is %.3e ",Re);
+// the flow is in turbulent regime
+q=mass_flow*cp*(Tbo-Tbi);
+printf("\nThe heat gained by air is %.3f BTU",q);
+hc=1; // convection coefficient between the outside duct wall and the attic air in BTU/(hr. sq.ft.degree Rankine).
+T_inf=105; // The temperature of attic air surrounding the duct in degree Fahrenheit
+hz=(0.023*Re^(4/5)*Pr^0.4)*kf/D; // The local coefficient at the duct end is %.2f BTU/(hr. sq.ft.degree Rankine)
+printf("\nThe local coefficient at the duct end is %.2f BTU/(hr. sq.ft.degree Rankine)",hz);
+qw=(T_inf-Tbo)/((1/hc)+(1/hz)); // wall flux in BTU/(hr. sq.ft.degree Rankine)
+printf("\nThe wall flux is %.1f BTU/(hr. sq.ft.degree Rankine)",qw);
+Two=qw*(1/hz)+Tbo; // The wall temperature at exit in degree Fahrenheit
+printf("\nThe wall temperature at exit is %.1f degree Fahrenheit",Two);