diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1309/CH6/EX6.6/ch6_6.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1309/CH6/EX6.6/ch6_6.sce')
-rwxr-xr-x | 1309/CH6/EX6.6/ch6_6.sce | 38 |
1 files changed, 38 insertions, 0 deletions
diff --git a/1309/CH6/EX6.6/ch6_6.sce b/1309/CH6/EX6.6/ch6_6.sce new file mode 100755 index 000000000..7a2076bf7 --- /dev/null +++ b/1309/CH6/EX6.6/ch6_6.sce @@ -0,0 +1,38 @@ +clc; +clear; +printf("\t\t\tChapter6_example6\n\n\n"); +// determibation of heat gained +// air properties to be calculated at T=(72+45)/2=58.5 degree Fahrenheit +// properties at T=58.5 degree fahrenheit from appendix table D1 +p = 0.077; // density in lbm/ft^3 +cp = 0.240; // specific heat in BTU/(lbm.degree Rankine) +v = 15.28e-5; // viscosity in ft^2/s +kf = 0.0146; // thermal conductivity in BTU/(hr.ft."R) +a = 0.776; // diffusivity in ft^2/hr +Pr = 0.711; // prandtl number +D=7/12; // diameter in ft +L=40; // length in ft +Tbo=72; // outlet temperature in degree Fahrenheit +Tbi=45; // inlet temperature in degree Fahrenheit +A=%pi*(D^2)/4; // cross sectional area of duct in ft^2 +// density at outlet temperature in lbm/ft^3 +rou_o=.0748; +V=10; // average velocity in ft/s +mass_flow=rou_o*A*V; +printf("\nThe mass flow rate is %.1f lbm/s",mass_flow); +// average velocity evaluated by using the average bulk temperature +V_avg=mass_flow/(p*A); +printf("\nThe average velocity evaluated by using the average bulk temperature is %.2f ft/s",V_avg); +Re=(V_avg*D)/v; +printf("\nThe Reynolds number for the flow is %.3e ",Re); +// the flow is in turbulent regime +q=mass_flow*cp*(Tbo-Tbi); +printf("\nThe heat gained by air is %.3f BTU",q); +hc=1; // convection coefficient between the outside duct wall and the attic air in BTU/(hr. sq.ft.degree Rankine). +T_inf=105; // The temperature of attic air surrounding the duct in degree Fahrenheit +hz=(0.023*Re^(4/5)*Pr^0.4)*kf/D; // The local coefficient at the duct end is %.2f BTU/(hr. sq.ft.degree Rankine) +printf("\nThe local coefficient at the duct end is %.2f BTU/(hr. sq.ft.degree Rankine)",hz); +qw=(T_inf-Tbo)/((1/hc)+(1/hz)); // wall flux in BTU/(hr. sq.ft.degree Rankine) +printf("\nThe wall flux is %.1f BTU/(hr. sq.ft.degree Rankine)",qw); +Two=qw*(1/hz)+Tbo; // The wall temperature at exit in degree Fahrenheit +printf("\nThe wall temperature at exit is %.1f degree Fahrenheit",Two); |