diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1309/CH6 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1309/CH6')
-rwxr-xr-x | 1309/CH6/EX6.1/Result6_1.pdf | bin | 0 -> 91487 bytes | |||
-rwxr-xr-x | 1309/CH6/EX6.1/ch6_1.sce | 36 | ||||
-rwxr-xr-x | 1309/CH6/EX6.2/Result6_2.pdf | bin | 0 -> 91452 bytes | |||
-rwxr-xr-x | 1309/CH6/EX6.2/ch6_2.sce | 26 | ||||
-rwxr-xr-x | 1309/CH6/EX6.3/Figure6_3.jpg | bin | 0 -> 72708 bytes | |||
-rwxr-xr-x | 1309/CH6/EX6.3/Result6_3.pdf | bin | 0 -> 95839 bytes | |||
-rwxr-xr-x | 1309/CH6/EX6.3/ch6_3.sce | 80 | ||||
-rwxr-xr-x | 1309/CH6/EX6.4/Figure6_4.jpg | bin | 0 -> 36881 bytes | |||
-rwxr-xr-x | 1309/CH6/EX6.4/Result6_4.pdf | bin | 0 -> 98966 bytes | |||
-rwxr-xr-x | 1309/CH6/EX6.4/ch6_4.sce | 105 | ||||
-rwxr-xr-x | 1309/CH6/EX6.5/Result6_5.pdf | bin | 0 -> 95048 bytes | |||
-rwxr-xr-x | 1309/CH6/EX6.5/ch6_5.sce | 42 | ||||
-rwxr-xr-x | 1309/CH6/EX6.6/Result6_6.pdf | bin | 0 -> 93446 bytes | |||
-rwxr-xr-x | 1309/CH6/EX6.6/ch6_6.sce | 38 |
14 files changed, 327 insertions, 0 deletions
diff --git a/1309/CH6/EX6.1/Result6_1.pdf b/1309/CH6/EX6.1/Result6_1.pdf Binary files differnew file mode 100755 index 000000000..82c83933e --- /dev/null +++ b/1309/CH6/EX6.1/Result6_1.pdf diff --git a/1309/CH6/EX6.1/ch6_1.sce b/1309/CH6/EX6.1/ch6_1.sce new file mode 100755 index 000000000..96510720a --- /dev/null +++ b/1309/CH6/EX6.1/ch6_1.sce @@ -0,0 +1,36 @@ +clc; +clear; +printf("\t\t\tChapter6_example1\n\n\n"); +// Determination of the fluid outlet tetnperature and the tube-wall temperature at the outlet. +// properties of ethylene glycol at 20 degree celsius from appendix table C5 +Cp_20=2382; +rou_20=1.116*1000; +v_20=19.18e-6; +kf_20=.249; +a_20=.939e-7; +Pr_20=204; +// specifications of 1/2 standard type M seamless copper water tubing from appendix table F2 +OD=1.588/100; +ID=1.446/100; +A=1.642e-4; +Q=3.25e-6; +V=Q/A; +printf("\nThe average flow velocity is %.1f m/s",V*100); +// calculation of Reynold's Number to check flow regime +Re=V*ID/v_20; +printf("\nThe Reynolds Number is %.1f",Re); +// since Re>he 2100, the flow regime is laminar and the hydrodynamic length can be calculated as +Z_h=0.05*ID*Re; +printf("\nThe hydrodynamic length is %.1f cm",Z_h*100); +Tbi=20; // bulk-fluid inlet temperature in degree celsius +qw=2200; // incident heat flux in W/m^2 +L=3; // Length of copper tube in m +R=ID/2; // inner radius in m +Tbo=Tbi+(2*qw*a_20*L)/(V*kf_20*R); +printf("\nThe bulk-fluid outlet temperature is %.1f degree celsius",Tbo); +// This result is based on fluid properties evaluated at 20°C. taken as a first approximation +Z_t=0.05*ID*Re*Pr_20; +printf("\nThe thermal entry length is %.1f m",Z_t); +Two=Tbo+(11*qw*ID)/(48*kf_20); // The wall temperature at outlet in degree celsius +printf("\nThe wall temperature at outlet is %.1f degree celsius",Two); +//The result is based on first approximation based on flow properties evaluated at the fluid inlet temperature. diff --git a/1309/CH6/EX6.2/Result6_2.pdf b/1309/CH6/EX6.2/Result6_2.pdf Binary files differnew file mode 100755 index 000000000..af48d23bf --- /dev/null +++ b/1309/CH6/EX6.2/Result6_2.pdf diff --git a/1309/CH6/EX6.2/ch6_2.sce b/1309/CH6/EX6.2/ch6_2.sce new file mode 100755 index 000000000..28135818c --- /dev/null +++ b/1309/CH6/EX6.2/ch6_2.sce @@ -0,0 +1,26 @@ +clc; +clear; +printf("\t\t\tChapter6_example2\n\n\n"); +// determination of average convection coefficient +T_avg=(140+70)/2; +printf("\nThe average bulk temperature is %d degree celsius",T_avg); +// properties of water at average bulk temperature from appendix table C11 +rou=.994*62.4; +kf=.363; +cp=.9980; +a=5.86e-3; +v=0.708e-5; +Pr=4.34; +// specifications of 1 standard type M copper tube from appendix table F2 +OD=1.125/12; // outer diameter in ft +ID=0.8792; // inner diameter in ft +A=0.006071 // cross sectional area in sq.ft +m_flow=1.5; // mass flow rate in lbm/s +V=m_flow*3600/(rou*A); // velocity in ft/hr +printf("\nThe velocity is %d ft/hr",V); +L=20; +Tw=240; +Tbo=140; +Tbi=70; +hL=-(rou*V*ID*cp*log((Tw-Tbo)/(Tw-Tbi)))/(4*L); +printf("\nThe average convective coefficient is %d BTU/(hr. sq.ft.degree Rankine)",hL); diff --git a/1309/CH6/EX6.3/Figure6_3.jpg b/1309/CH6/EX6.3/Figure6_3.jpg Binary files differnew file mode 100755 index 000000000..02b73a4d5 --- /dev/null +++ b/1309/CH6/EX6.3/Figure6_3.jpg diff --git a/1309/CH6/EX6.3/Result6_3.pdf b/1309/CH6/EX6.3/Result6_3.pdf Binary files differnew file mode 100755 index 000000000..b1e59a41f --- /dev/null +++ b/1309/CH6/EX6.3/Result6_3.pdf diff --git a/1309/CH6/EX6.3/ch6_3.sce b/1309/CH6/EX6.3/ch6_3.sce new file mode 100755 index 000000000..87c08de9b --- /dev/null +++ b/1309/CH6/EX6.3/ch6_3.sce @@ -0,0 +1,80 @@ +clc; +clear; +printf("\t\t\tChapter6_example3\n\n\n"); +// Determination of the variation of wall temperature with length up to the point where the flow becomes fully developed. +// properties of milk +kf=0.6; // thermal conductivity in W/(m-K) +cp=3.85*1000; // specific heat in J/(kg*K) +rou=1030; // density in kg/m^3 +mu=2.12e3; // viscosity in N s/m^2 +// specifications of 1/2 standard type K tubing from appendix table F2 +OD=1.588/100; // outer diameter in m +ID=1.340/100; // inner diameter in m +A=1.410e-4 // cross sectional area in m^2 +rou=1030; +V=0.1; +mu=2.12e-3 +// determination of flow regime +Re=rou*V*ID/(mu); +printf("\nThe Reynolds Number is %d",Re); +// The flow being laminar, the hydrodynamic entry length is calculated as follows +ze=0.05*ID*Re; +printf("\nThe hydrodynamic entry length is %.1f cm",ze*100); +Tbo=71.7; // final temperature in degree celsius +Tbi=20; // initial temperature in degree celsius +L=6; // heating length in m +qw=rou*V*ID*cp*(Tbo-Tbi)/(4*L); +printf("\nThe heat flux is %d W/sq.m",qw); +q=qw*%pi*ID*L; +printf("\nThe power required is %.1f W",q); +printf("\nA 3000 W heater would suffice"); +Pr=(cp*mu)/kf; // Prandtl Number +printf("\nThe Prandtl Number is %.1f",Pr); +zf=0.05*ID*Re*Pr; +printf("\nThe length required for flow to be thermally developed is %.1f m",zf); +// calculations of wall temperature of the tube +reciprocal_Gz=[0.002 0.004 0.01 0.04 0.05];// values of 1/Gz taken +[n m]=size(reciprocal_Gz); +Nu=[12 10 7.5 5.2 4.5]; //Enter the corresponding value of Nusselts Number from figure 6.8 +for i=1:m + z(i)=ID*Re*Pr*reciprocal_Gz(i); + h(i)=kf*Nu(i)/ID; + Tbz(i)=20+(8.617*z(i)); + Twz(i)=Tbz(i)+(11447/h(i)); +end +printf("\nSummary of Calculations to Find the Wall Temperature of the Tube"); +printf("\n\t1/Gz\t\tNu\t\tz (m)\t\th W/(sq.m.K)\t\tTbz (degree celsius)\t\tTwz (degree celsius)"); +for i=1:m +printf("\n\t%.3f\t\t%.1f\t\t%.3f\t\t%d\t\t\t%.1f\t\t\t\t%.1f",reciprocal_Gz(i),Nu(i),z(i),h(i),Tbz(i),Twz(i)); +end +subplot(211); +plot(z,Tbz,'r--d',z,Twz,'r-'); // our first figure +a1 = gca(); +h1=legend(["Tbz";"Twz"]); +subplot(212) +plot(z,h, 'o--'); // our second figure +hl=legend(['h'],2); +title('Variation of temperature and local convection coefficient with axial distance for the constant- wall-flux tube'); +a2 = gca(); +a2.axes_visible = ["off", "on","on"]; +a2.y_location ="right"; + +a1.axes_bounds=[0 0 1 1]; // modify the first figure to occupy the whole area +a2.axes_bounds=[0 0 1 1]; // modify the second figure to occupy the whole area too + +a1.data_bounds=[0,0;6,140]; +a2.data_bounds=[0,0;6,700]; + +a1.x_ticks = tlist(["ticks", "locations", "labels"], (0:6)', ["0";"1";"2";"3";"4";"5";"6"]); +a1.x_label +a1.y_label +x_label=a1.x_label; +x_label.text=" z,m" +a2.x_label +a2.y_label +y_label=a1.y_label; +y_label.text="T, degree celsius" +y_label=a2.y_label; +y_label.text="h, W/(sq.m.K)" +xgrid(1); +a2.filled = "off"; diff --git a/1309/CH6/EX6.4/Figure6_4.jpg b/1309/CH6/EX6.4/Figure6_4.jpg Binary files differnew file mode 100755 index 000000000..3922573f9 --- /dev/null +++ b/1309/CH6/EX6.4/Figure6_4.jpg diff --git a/1309/CH6/EX6.4/Result6_4.pdf b/1309/CH6/EX6.4/Result6_4.pdf Binary files differnew file mode 100755 index 000000000..91671f065 --- /dev/null +++ b/1309/CH6/EX6.4/Result6_4.pdf diff --git a/1309/CH6/EX6.4/ch6_4.sce b/1309/CH6/EX6.4/ch6_4.sce new file mode 100755 index 000000000..3fb1a5d5a --- /dev/null +++ b/1309/CH6/EX6.4/ch6_4.sce @@ -0,0 +1,105 @@ +clc; +clear; +printf("\t\t\tChapter6_example4\n\n\n"); +// The average bulk temperature of the Freon-12 is [-4O +(-4)]/2 = -22°F +// properties of Freon-12 at average bulk temperature +kf=0.04; // thermal conductivity in BTU/(hr.ft.°R) +cp=0.2139; // specific heat in BTU/(lbm-°R) +rou= 1.489*(62.4); // density in lbm/cu.ft +v=0.272e-5; // viscosity in sq.ft/s +a=2.04e-3; // diffusivity in sq.ft/hr +Pr=4.8; // Prandtl Number +// specifications of 3/8 standard type K copper tubing from appendix table F2 +OD=0.5/12; // outer diameter in ft +ID=0.03350; // inner diameter in ft +A=0.0008814 // cross sectional area in sq.ft +// Laminar conditions are asssumed +z=5; +Tw=32; +Tbo=-4; +Tbi=-40; +L=5; +i=1; +V_assumed(i)=100; //assumed value for velocity +for i=1:6 + inv_Gz(i)=(z*a)/(V_assumed(i)*ID^2); + Nu=[4.7 5.8 6.2 6.3 6.4 6.4]; // corresponding Nusselt numbers from fig. 8.8: + hL(i)=Nu(i)*kf/ID; + V(i)=-(2*a*L*hL(i))/((kf*ID/2)*log((Tw-Tbo)/(Tw-Tbi))); + V_assumed(i+1)=V(i); +end +printf("\nSummary of Results\n"); +printf("Assmued V (ft/hr)\t1/Gz\tNu(fig 8.8)\thL BTU/(hr. sq.ft. degree R)\tV (ft/hr)\n"); +for j=1:6 +printf("\t%d\t\t%.4f\t%.1f\t\t%.2f\t\t\t\t%d\n",V_assumed(j),inv_Gz(j),Nu(j),hL(j),V(j)); +end +V_final=V(i-1); +hL_final=hL(i-1); +printf("\nThe final velocity is %d ft/hr = %.4f ft/s",V_final,V_final/3600); +printf("\nThe final convective coefficient is %.2f BTU/(hr. sq.ft. degree R)",hL_final); +// checking the laminar-flow assumption by calculating the Reynolds number +Re=(V_final/3600)*ID/v; +printf("\nThe Reynolds number is %d",Re); +// The flow is laminar +m_Fr=rou*A*V_final/3600; +printf("\nThe mass flow rate of Freon-12 is %.2e lbm/s = %.2f lbm/hr",m_Fr,m_Fr*3600); +As=%pi*ID*L; +q=hL_final*As*[(Tw-Tbo)-(Tw-Tbi)]/(log((Tw-Tbo)/(Tw-Tbi))); +printf("\nThe heat gained by Freon-12 is %.1f BTU/hr",q); +q_check=m_Fr*cp*(Tbo-Tbi); +printf("\nOn checking the heat transferred we find almost equal to the heat gained by Freon-12"); +rou_water=1.002*62.4; // density of water in lbm/ft^3 from appendix table C11 +m_water=rou_water*L*(2/12)*(3/12); +printf("\nThe mass of water in the prescribed volume is %.1f lbm",m_water); +// to remove 144 BTU/lbm of water, the time required is caalculated as below +t=144*m_water/q; +printf("\nThe required time is %.1f hr",t); +inv_Gz1=[0.001 0.004 0.01 0.015 0.02 0.0271]; // guess values of 1/Gz +Nu_D=[19.3 12.1 8.9 7.7 7.1 6.4]; //corresponding Nusselt number from fig. 6.8 +[n m]=size(inv_Gz1); +for j=1:m + Z(j)=ID*Re*Pr*(inv_Gz1(j)); + hz(j)=Nu_D(j)*kf/ID; + Tbz(j)=32-72*exp(-0.01812*Z(j)*hz(j)); +end +printf("\nSummary of Data for Example 6.4 "); +printf("\n\t1/Gz\tNu_D\tz (ft)\thz, BTU/(hr. sq.ft.degree R)\tTbz,degree F\n"); +for p=1:m + printf("\t%.4f\t%.1f\t%.2f\t%.2f\t\t\t\t%.1f\n",inv_Gz1(p),Nu_D(p),Z(p),hz(p),Tbz(p)); +end +subplot(211); +plot(Z,Tbz,'r--d',Z,Tw,'r-'); // your first figure +a1 = gca(); +hl=legend(['Tbz';'Tw'],4); +subplot(212) +plot(Z,hz, 'o--'); // your second figure +a2 = gca(); +hl=legend(['hz'],1); +a2.axes_visible = ["off", "on","on"]; +a2.y_location ="right"; + +a1.axes_bounds=[0 0 1 1]; // modify the first figure to occupy the whole area +a2.axes_bounds=[0 0 1 1]; // modify the second figure to occupy the whole area too +a2.filled = "off"; +a1.data_bounds=[-2,-40;5,40]; +a2.data_bounds=[-2,0;5,30]; +x_label1=a1.x_label; +x_label1.text="z, ft"; +y_label2=a2.y_label; +y_label2.text="hz, BTU/(hr.sq.ft.degree R)"; +y_label=a1.y_label; +y_label.text="T, degree F"; +newticks1=a1.y_ticks; +newticks1(2)=[-40;-30;-20;-10;0;10;20;30;40]; +newticks1(3)=['-40';'-30';'-20';'-10';'0';'10';'20';'30';'40']; +a1.y_ticks=newticks1; +newticks2=a2.y_ticks; +newticks2(2)=[0;5;10;20;30]; +newticks2(3)=['0';'5';'10';'20';'30']; +a2.y_ticks=newticks2; +newticks=a1.x_ticks; +newticks(2)=[-2;-1;0;1;2;3;4;5]; +newticks(3)=['-2';'-1';'0';'1';'2';'3';'4';'5']; +a1.x_ticks=newticks; + +title('Graphical summary of the solution to the constant-wall-temperature tube of Example 6.4'); diff --git a/1309/CH6/EX6.5/Result6_5.pdf b/1309/CH6/EX6.5/Result6_5.pdf Binary files differnew file mode 100755 index 000000000..dbd235233 --- /dev/null +++ b/1309/CH6/EX6.5/Result6_5.pdf diff --git a/1309/CH6/EX6.5/ch6_5.sce b/1309/CH6/EX6.5/ch6_5.sce new file mode 100755 index 000000000..c15d94b29 --- /dev/null +++ b/1309/CH6/EX6.5/ch6_5.sce @@ -0,0 +1,42 @@ +clc; +clear; +printf("\t\t\tChapter6_example5\n\n\n"); +// Determination for the power required for heating and the wall temperature at the outlet. +// The liquid properties are evaluated at the mean temperature of (80 + 20)/2 = 50°C. +// specifications of 1 standard type K copper water tubing from appendix table F2 +OD = 2.858/100; // outer diameter in m +ID = 2.528/100; // inner diameter in m +A = 5.019e-4; // cross sectional area in sq.m +// 1 oz = 2.957e-5 m^3 +Q=80*2.957e-5/120; // The volume flow rate of water (at 20°C) in cu.m/s +printf("\nThe volume flow rate of water (at 20°C) is %.2e cu.m/s",Q); +p_20= 1.000*1000; // density of water at 20°C in kg/cu.m +// properties of water at 50°C from appendix table C11 +p_50= 0.990*(1000); // density in kg/m3 +cp= 4181; // specific heat in J/(kg*K) +v = 0.586e-6; // viscosity in sq.m/s +kf = 0.640; // thermal conductivity in W/(m.K) +a = 1.533e-7; // diffusivity in sq.m/s +Pr = 3.68; // Prandtl number +mass_flow=p_20*Q; // mass flow rate through the tube in kg/s +printf("\nmass flow rate through the tube is %.4f kg/s",mass_flow); +L=3; // length of tube in m +As=%pi*ID*L; +Tbo=80; // final temperature in °C +Tbi=20; // initial temperature in °C +qw=mass_flow*cp*(Tbo-Tbi)/(As); +q=qw*As; +A=%pi*(ID/2)^2; +printf("\nThe power required in %.3e W/sq.m = %d W",qw,q); +V=mass_flow/(p_50*A); // average velocity at 50 °C +printf("\nThe average velocity at 50°C is %.2e m/s",V); +Re=(V*ID)/v; // Reynold's Number +printf("\nThe Reynolds Number for the flow is %d",Re); +// The flow is laminar so we can use Figure 6.12 to obtain the information needed on Nusselt number and to find hz +inv_Gz=L/(Re*ID*Pr); // The inverse Graetz number at tube end, based on 50°C conditions +printf("\nThe inverse Graetz number at tube end, based on 50°C conditions is %.4f",inv_Gz); +Nu=6.9; //value of corresponding Nusselts Number from figure 6.12 +hz=(Nu*kf)/ID; +printf("\nThe local convection coefficient is %.1f W/(sq.m.K)",hz); +Two=(qw/hz)+Tbo; // The outlet wall temperature in °C +printf("\nThe outlet wall temperature is %d °C",Two); diff --git a/1309/CH6/EX6.6/Result6_6.pdf b/1309/CH6/EX6.6/Result6_6.pdf Binary files differnew file mode 100755 index 000000000..707b482bf --- /dev/null +++ b/1309/CH6/EX6.6/Result6_6.pdf diff --git a/1309/CH6/EX6.6/ch6_6.sce b/1309/CH6/EX6.6/ch6_6.sce new file mode 100755 index 000000000..7a2076bf7 --- /dev/null +++ b/1309/CH6/EX6.6/ch6_6.sce @@ -0,0 +1,38 @@ +clc; +clear; +printf("\t\t\tChapter6_example6\n\n\n"); +// determibation of heat gained +// air properties to be calculated at T=(72+45)/2=58.5 degree Fahrenheit +// properties at T=58.5 degree fahrenheit from appendix table D1 +p = 0.077; // density in lbm/ft^3 +cp = 0.240; // specific heat in BTU/(lbm.degree Rankine) +v = 15.28e-5; // viscosity in ft^2/s +kf = 0.0146; // thermal conductivity in BTU/(hr.ft."R) +a = 0.776; // diffusivity in ft^2/hr +Pr = 0.711; // prandtl number +D=7/12; // diameter in ft +L=40; // length in ft +Tbo=72; // outlet temperature in degree Fahrenheit +Tbi=45; // inlet temperature in degree Fahrenheit +A=%pi*(D^2)/4; // cross sectional area of duct in ft^2 +// density at outlet temperature in lbm/ft^3 +rou_o=.0748; +V=10; // average velocity in ft/s +mass_flow=rou_o*A*V; +printf("\nThe mass flow rate is %.1f lbm/s",mass_flow); +// average velocity evaluated by using the average bulk temperature +V_avg=mass_flow/(p*A); +printf("\nThe average velocity evaluated by using the average bulk temperature is %.2f ft/s",V_avg); +Re=(V_avg*D)/v; +printf("\nThe Reynolds number for the flow is %.3e ",Re); +// the flow is in turbulent regime +q=mass_flow*cp*(Tbo-Tbi); +printf("\nThe heat gained by air is %.3f BTU",q); +hc=1; // convection coefficient between the outside duct wall and the attic air in BTU/(hr. sq.ft.degree Rankine). +T_inf=105; // The temperature of attic air surrounding the duct in degree Fahrenheit +hz=(0.023*Re^(4/5)*Pr^0.4)*kf/D; // The local coefficient at the duct end is %.2f BTU/(hr. sq.ft.degree Rankine) +printf("\nThe local coefficient at the duct end is %.2f BTU/(hr. sq.ft.degree Rankine)",hz); +qw=(T_inf-Tbo)/((1/hc)+(1/hz)); // wall flux in BTU/(hr. sq.ft.degree Rankine) +printf("\nThe wall flux is %.1f BTU/(hr. sq.ft.degree Rankine)",qw); +Two=qw*(1/hz)+Tbo; // The wall temperature at exit in degree Fahrenheit +printf("\nThe wall temperature at exit is %.1f degree Fahrenheit",Two); |