diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1244/CH10/EX10.6/Example106.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1244/CH10/EX10.6/Example106.sce')
-rwxr-xr-x | 1244/CH10/EX10.6/Example106.sce | 43 |
1 files changed, 43 insertions, 0 deletions
diff --git a/1244/CH10/EX10.6/Example106.sce b/1244/CH10/EX10.6/Example106.sce new file mode 100755 index 000000000..72bff22cd --- /dev/null +++ b/1244/CH10/EX10.6/Example106.sce @@ -0,0 +1,43 @@ +
+// Display mode
+mode(0);
+
+// Display warning for floating point exception
+ieee(1);
+
+clc;
+disp("Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 10, Example 6")
+//Length of Heat pipe in meters
+L_eff=0.30;
+//Temperature of the heat pipe in degree celcius
+T=100;
+//Diameter of the heat pipe in meters
+D=1e-2;
+//Density of water at 100 degree celcius in k/m^3
+rho=958;
+//Viscosity of water in N s/m^2
+mu=279e-6;
+//surface tension of the liquid-to-vapor interface in N/m
+sigma=58.9e-3;
+//latent heat of vaporization in J/kg
+h_fg=2.26e6;
+//Inclination angle in degree
+theta=30;
+//Acceleration due to gravity in meter/sec^2
+g=9.81;
+//Wire diameter for wick in metres
+d=0.0045e-2;
+//So thickness of four layers of wire mesh
+t=4*d;
+//Area of the wick in m^2
+Aw=%pi*D*t;
+//For phosphorus-bronze,heat pipe wick pore size in meters
+r=0.002e-2;
+//For phosphorus-bronze,heat pipe wick permeability in m^2
+K=0.3e-10;
+disp("Maximum liquid flow rate in kg/sec")
+//flow rate in kg/sec
+m_max=((2*sigma/r)-rho*g*L_eff*sind(theta))*((rho*Aw*K)/(mu*L_eff))
+disp("Maximum heat transport capability in Watt")
+//heat transport capability in W
+q_max=m_max*h_fg
|