diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1244/CH10 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1244/CH10')
-rwxr-xr-x | 1244/CH10/EX10.1/Example101.sce | 49 | ||||
-rwxr-xr-x | 1244/CH10/EX10.2/Example102.sce | 42 | ||||
-rwxr-xr-x | 1244/CH10/EX10.3/Example103.sce | 55 | ||||
-rwxr-xr-x | 1244/CH10/EX10.4/Example104.sce | 42 | ||||
-rwxr-xr-x | 1244/CH10/EX10.5/Example105.sce | 38 | ||||
-rwxr-xr-x | 1244/CH10/EX10.6/Example106.sce | 43 | ||||
-rwxr-xr-x | 1244/CH10/EX10.7/Example107.sce | 40 |
7 files changed, 309 insertions, 0 deletions
diff --git a/1244/CH10/EX10.1/Example101.sce b/1244/CH10/EX10.1/Example101.sce new file mode 100755 index 000000000..471ca7a8b --- /dev/null +++ b/1244/CH10/EX10.1/Example101.sce @@ -0,0 +1,49 @@ +
+// Display mode
+mode(0);
+
+// Display warning for floating point exception
+ieee(1);
+
+clc;
+disp("Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 10, Example 1")
+//Surface temperature of polished stainless steel surface in degree celcius
+T_s=106;
+//Boiling point of water under at atmospheric pressure in degree celcius
+T_b=100;
+//Value of empirical constant
+C_sf=0.0132;
+//latent heat of vaporization in J/kg
+h_fg=2.25e6;
+//gravitational acceleration in m/s^2
+g=9.81;
+//Value of proportionality factor in British Gravitational system
+g_c=1;
+//density of saturated liquid in kg/m^3
+rho_l=962;
+//density of saturated vapor in kg/m^3
+rho_v=0.60;
+//specific heat of saturated liquid in J/kg K
+c_l=4211;
+//prandtl number of saturated liquid
+Pr_l=1.75;
+//surface tension of the liquid-to-vapor interface in N/m
+sigma=58.8e-3;
+// viscosity of the liquid in kg/ms
+mu_l=2.77e-4;
+//Excess temperature in degree Celcius
+delta_Tx= T_s-T_b;
+
+disp("Heat flux from the surface to the water in W/m^2")
+//Heat flux in W./m2
+q=(c_l*delta_Tx/(C_sf*h_fg*Pr_l))^3*mu_l*h_fg*sqrt((g*(rho_l-rho_v))/(g_c*sigma))
+
+disp("Critical heat flux in W/m^2")
+//Heat flux in W./m2
+q_maxZ=(%pi/24)*sqrt(rho_v)*h_fg*(sigma*g*(rho_l-rho_v)*g_c)^0.25
+
+disp("At 6°C excess temperature the heat flux is less than the critical value; therefore nucleate pool boiling exists")
+disp("For the Teflon-coated stainless steel surface, heat flux in W/m^2")
+//Heat flux in W./m2
+q=29669*(C_sf/0.0058)^3
+disp("Thus for Teflon-coated stainless steel surface there is a remarkable increase in heat flux; however, it is still below the critical value.")
diff --git a/1244/CH10/EX10.2/Example102.sce b/1244/CH10/EX10.2/Example102.sce new file mode 100755 index 000000000..33f37a4db --- /dev/null +++ b/1244/CH10/EX10.2/Example102.sce @@ -0,0 +1,42 @@ +
+// Display mode
+mode(0);
+
+// Display warning for floating point exception
+ieee(1);
+
+clc;
+disp("Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 10, Example 2")
+//density of saturated liquid in kg/m^3
+rho_l=962;
+//gravitational acceleration in m/s^2
+g=9.8;
+//latent heat of vaporization in J/kg
+h_fg=2250000;
+//density of saturated vapor in kg/m^3
+rho_v=0.60;
+//Surface temperature of polished stainless steel surface in degree celcius
+T_s=400;
+//Value of proportionality factor in British Gravitational system
+g_c=1;
+//Boiling point of water under at atmospheric pressure in degree celcius
+T_b=100;
+//surface tension of the liquid-to-vapor interface in N/m
+sigma=58.8e-3;
+//Excess temperature in degree Celcius
+delta_Tx= T_s-T_b;
+//Wavelength in m from eq. 10.7
+lamda=2*%pi*sqrt(g_c*sigma/(g*(rho_l-rho_v)));
+//Thermal conductivity in W/mK
+k_c=0.0249;
+//Absolute viscosity in Ns/m^2
+mu_c=12.1e-6;
+//Specific heat in J/kg K
+c_pc=2034;
+//Heat transfer coefficient due to conduction alone in W/m^2 K
+h_c=(0.59)*(((g*(rho_l-rho_v)*rho_v*(k_c^3)*(h_fg+(0.68*c_pc*delta_Tx)))/(lamda*mu_c*delta_Tx))^0.25); // expression obtained assuming diameter D tending to infinity
+//Emissivity
+epsilon_s= 0.05; //since surface is polished and hence heat transfer coefficient due to radiation is negligible
+disp("Heat flux in W/m^2")
+//Heat flux in W/m^2
+q= h_c*delta_Tx
diff --git a/1244/CH10/EX10.3/Example103.sce b/1244/CH10/EX10.3/Example103.sce new file mode 100755 index 000000000..1882bf8a6 --- /dev/null +++ b/1244/CH10/EX10.3/Example103.sce @@ -0,0 +1,55 @@ +
+
+// Display mode
+mode(0);
+
+// Display warning for floating point exception
+ieee(1);
+
+clc;
+disp("Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 10, Example 3")
+//Flow rate of n-butyl alcohol in kg/hr
+m=161;
+//Internal diameter of copper tube in meters
+D=0.01;
+//Tube wall temperature in degree C
+T=140;
+//surface tension in N/m
+sigma=0.0183;
+//Heat of vaporization in J/kg
+h_fg=591500;
+//atmospheric pressure boiling point in degree C
+T_sat=117.5;
+// saturation pressure corresponding to a saturation temperature of 140°C in atm
+P_sat=2;
+//Density of vapor in kg/m^3
+rho_v=2.3;
+//Viscosity of vapor in kg/m s
+mu_v=.0143e-3;
+//Property values for n-butyl alcohol are taken from Appendix 2, Table 19
+//Density in kg/m^3
+rho_l=737;
+//Absolute viscosity in Ns/m^2
+mu_l=0.39e-3;
+//Specific heat in J/kg K
+c_l=3429;
+//Prandtl number
+Pr_l=8.2;
+//Thermal conductivity in W/m K
+k_l=0.13;
+//Empirical constant
+C_sf=0.00305;// Value taken from table 10.1
+//Mass velocity in kg/m^2 s
+G=(m/3600)*(4/(%pi*0.01^2));
+//Reynolds number for liquid flow
+Re_D=(G*D)/mu_l;
+//The contribution to the heat transfer coefficient due to the two-phase annular flow is [(0.023)*(14590)^0.8*(8.2)^0.4*16.3*(1-x)^0.8*F]
+//Since the vapor pressure changes by 1 atm over the temperature range from saturation temperature to 140°C,so saturation pressure in N/m^2
+delta_p_sat=101300;
+//Therefore the contribution to the heat transfer coefficient from nucleate boiling is
+//h_b= 0.00122*[(0.163^0.79*3429^0.45*737^0.49*1^0.25)/(0.0183^0.5*0.39e-3^0.29*591300^0.24*2.3^0.24)]*(140-117.5)^0.24*(101300)^0.75*S
+//or h_b= 8393S
+//Now 1/Xtt will be calculated by
+//1/Xtt=12.86*(x/(1-x))^0.9
+//Now a table is prepared showing stepwise calculations that track the increase in quality, from x=0 to x=0.5,assuming that the steps delta x are small enough that the heat flux and other parameters are reasonably constant in that step
+disp("The tube length required to reach 50% quality is 1.35 m")
diff --git a/1244/CH10/EX10.4/Example104.sce b/1244/CH10/EX10.4/Example104.sce new file mode 100755 index 000000000..807ae3372 --- /dev/null +++ b/1244/CH10/EX10.4/Example104.sce @@ -0,0 +1,42 @@ +
+// Display mode
+mode(0);
+
+// Display warning for floating point exception
+ieee(1);
+
+clc;
+disp("Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 10, Example 4")
+//Outer diameter of the tube in meters
+D=0.013;
+//Acceleration due to gravity in m/s^2
+g=9.81;
+//Length of the tube in meters
+L=1.5;
+//Temperature of saturated vapour in Kelvin
+T_sv=349;
+//Average tube wall temperature in Kelvin
+T_s=325;
+//Average temperature of the condensate film in degree K
+Tf=(T_sv+T_s)/2;
+//Thermal conductivity of liquid in W/m-K
+k_l=0.661;
+//Viscosity of liquid in N s/m^2
+mu_l=4.48e-4;
+//Dendity of liquid in kg/m^3
+rho_l=980.9;
+//Specific heat of liquid in J/kg K
+c_pl=4184;
+//Latent heat of condensation in J/kg
+h_fg=2.349e6;
+//Density of vapor in kg/m^3
+rho_v=0.25;
+//Modified latent heat of condensation in J/kg
+h_fg_dash=h_fg+(3/8)*c_pl*(T_sv-T_s);
+
+disp("Heat transfer coefficient for tube in horizontal position in W/m^2 K")
+//Heat transfer coefficient in W/m2K
+h_c_bar=0.725*(((rho_l*(rho_l-rho_v)*g*h_fg_dash*k_l^3)/(D*mu_l*(T_sv-T_s)))^0.25)
+disp("Heat transfer coefficient for tube in vertical position in W/m^2 K")
+////Heat transfer coefficient in W/m2K
+h_c_bar=0.943*(((rho_l*(rho_l-rho_v)*g*h_fg_dash*k_l^3)/(mu_l*(T_sv-T_s)))^0.25)
diff --git a/1244/CH10/EX10.5/Example105.sce b/1244/CH10/EX10.5/Example105.sce new file mode 100755 index 000000000..07f74858c --- /dev/null +++ b/1244/CH10/EX10.5/Example105.sce @@ -0,0 +1,38 @@ +
+// Display mode
+mode(0);
+
+// Display warning for floating point exception
+ieee(1);
+
+clc;
+disp("Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 10, Example 5")
+//Acceleration due to gravity in m/s^2
+g=9.81;
+//Length of the tube in meters
+L=1.5;
+//Temperature of saturated vapour in Kelvin
+T_sv=349;
+//Average tube wall temperature in Kelvin
+T_s=325;
+//Average temperature of the condensate film in Kelvin
+Tf=(T_sv+T_s)/2;
+//Thermal conductivity of liquid in W/m-K
+k_l=0.661;
+//Viscosity of liquid in N s/m^2
+mu_l=4.48e-4;
+//Dendity of liquid in kg/m^3
+rho_l=980.9;
+//Specific heat of liquid in J/kg K
+c_pl=4184;
+//Latent heat of condensation in J/kg
+h_fg=2.349e6;
+//Density of vapor in kg/m^3
+rho_v=0.25;
+//Modified latent heat of condensation in J/kg
+h_fg_dash=h_fg+(3/8)*c_pl*(T_sv-T_s);
+
+disp("Reynolds number at the lower edge")
+//Reynolds number
+Re=(4/3)*(((4*k_l*L*(T_sv-T_s)*rho_l^(2/3)*g^(1/3))/(mu_l^(5/3)*h_fg_dash))^0.75)
+disp("Since the Reynolds number at the lower edge of the tube is below 2000, the flow of the condensate is laminar")
diff --git a/1244/CH10/EX10.6/Example106.sce b/1244/CH10/EX10.6/Example106.sce new file mode 100755 index 000000000..72bff22cd --- /dev/null +++ b/1244/CH10/EX10.6/Example106.sce @@ -0,0 +1,43 @@ +
+// Display mode
+mode(0);
+
+// Display warning for floating point exception
+ieee(1);
+
+clc;
+disp("Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 10, Example 6")
+//Length of Heat pipe in meters
+L_eff=0.30;
+//Temperature of the heat pipe in degree celcius
+T=100;
+//Diameter of the heat pipe in meters
+D=1e-2;
+//Density of water at 100 degree celcius in k/m^3
+rho=958;
+//Viscosity of water in N s/m^2
+mu=279e-6;
+//surface tension of the liquid-to-vapor interface in N/m
+sigma=58.9e-3;
+//latent heat of vaporization in J/kg
+h_fg=2.26e6;
+//Inclination angle in degree
+theta=30;
+//Acceleration due to gravity in meter/sec^2
+g=9.81;
+//Wire diameter for wick in metres
+d=0.0045e-2;
+//So thickness of four layers of wire mesh
+t=4*d;
+//Area of the wick in m^2
+Aw=%pi*D*t;
+//For phosphorus-bronze,heat pipe wick pore size in meters
+r=0.002e-2;
+//For phosphorus-bronze,heat pipe wick permeability in m^2
+K=0.3e-10;
+disp("Maximum liquid flow rate in kg/sec")
+//flow rate in kg/sec
+m_max=((2*sigma/r)-rho*g*L_eff*sind(theta))*((rho*Aw*K)/(mu*L_eff))
+disp("Maximum heat transport capability in Watt")
+//heat transport capability in W
+q_max=m_max*h_fg
diff --git a/1244/CH10/EX10.7/Example107.sce b/1244/CH10/EX10.7/Example107.sce new file mode 100755 index 000000000..395d70eff --- /dev/null +++ b/1244/CH10/EX10.7/Example107.sce @@ -0,0 +1,40 @@ +
+// Display mode
+mode(0);
+
+// Display warning for floating point exception
+ieee(1);
+
+clc;
+disp("Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 10, Example 7")
+//Temperature of the brine spray used for internal refrigeration in degree celcius
+T_inf=-11;
+//Required thickness of ice layer in meters
+epsilon= 0.0025;
+//Water-liquid temperature in degree celcius
+T1=4.4;
+//Liquid-surface conductance in W/m^2 K
+h_epsilon=57;
+//Conductance between brine and ice(including metal wall) in W/m^2 K
+h_not=570;
+//Latent heat of fusion for ice in J/Kg
+Lf=333700;
+//Density for ice in Kg/m^3
+rho=918;
+//Thermal conductivity for ice in W/m K
+k=2.32;
+//Freezing point temperature in degree K
+Tfr=0;
+//Dimensionless R, T, epsilon and t are as follows
+//R plus parameter
+R_plus= h_epsilon/h_not;
+//T plus parameter
+T_plus= (T1-Tfr)/(Tfr-T_inf);
+//Epsilon plus parameter
+Epsilon_plus= h_not*epsilon/k;
+//t plus parameter
+t_plus=(Epsilon_plus/(R_plus*T_plus))-((1/(R_plus*T_plus)^2)*log(1+(R_plus*T_plus*Epsilon_plus/(1+R_plus*T_plus))))
+
+disp("Time taken for 0.25cm thick ice layer deposition in sec")
+//time in seconds
+t=t_plus*rho*Lf*k/((h_not)^2*(Tfr-T_inf))
|