summaryrefslogtreecommitdiff
path: root/1205/CH3
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /1205/CH3
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '1205/CH3')
-rw-r--r--1205/CH3/EX3.1/S_3_1.sce35
-rw-r--r--1205/CH3/EX3.10/S_3_10.sce40
-rw-r--r--1205/CH3/EX3.11/S_3_11.sce30
-rw-r--r--1205/CH3/EX3.2/S_3_2.sce14
-rw-r--r--1205/CH3/EX3.3/S_3_3.sce16
-rw-r--r--1205/CH3/EX3.4/S_3_4.sce24
-rw-r--r--1205/CH3/EX3.5/S_3_5.sce32
-rw-r--r--1205/CH3/EX3.6/S_3_6.sce17
-rw-r--r--1205/CH3/EX3.7/S_3_7.sce12
-rw-r--r--1205/CH3/EX3.8/S_3_8.sce24
-rw-r--r--1205/CH3/EX3.9/S_3_9.sce33
11 files changed, 277 insertions, 0 deletions
diff --git a/1205/CH3/EX3.1/S_3_1.sce b/1205/CH3/EX3.1/S_3_1.sce
new file mode 100644
index 000000000..3991497ce
--- /dev/null
+++ b/1205/CH3/EX3.1/S_3_1.sce
@@ -0,0 +1,35 @@
+clc;
+// Given data
+F=500; // N , Vertical force applied to end of lever
+theta=60;// degree, angle made by lever with +ve X axis
+theta=theta*%pi/180;// Conversion of angle into radian
+l=600; // mm , length of lever
+
+// a ) Momemt about O
+d=l*cos(theta);// mm ,perpendicular distance from o to the line of action
+d=d/1000; // m, conversion into meter
+Mo=F*d;// N.m, Magnitude of moment about O
+printf("Magnitude of moment about O of the 500 N is %.2f N.m and it is in clockwise direction as force tends to rotate lever clockwise\n",Mo);
+
+// b) Horizontal force
+
+d=l*sin(theta);//mm, perpendicular distance from o to the line of action
+d=d/1000; // m, conversion into meter
+F=Mo/d;// N, Horizontal Force at A required to produce same Moment about O
+printf("Magnitude of Horizontal Force at A required to produce same Moment about O is %.2f N\n",F);
+
+// c)Smallest force
+
+// F is smaller when d is maximum in expression Mo=F*d, so we choose force perpendicular to OA
+d=0.6;// m ,perpendicular distance from o to the line of action
+F=Mo/d;// N, Smallest Force at A required to produce same Moment about O
+printf("Magnitude of smallest Force at A required to produce same Moment about O is %.2f N\n",F);
+
+//d) 1200 N vertical force
+F=1200;// N, verical force producing same movement on lever acting at pt B
+d=Mo/F;// m, perpendicular distance from o to the line of action of force
+OB=d/cos(theta);//m, distance of point B from O
+OB=OB*1000;//mm, conversion into millimeter
+printf("Verical force of 1200 N must act at %.2f mm far from the shaft to create same moment about O\n",OB);
+
+
diff --git a/1205/CH3/EX3.10/S_3_10.sce b/1205/CH3/EX3.10/S_3_10.sce
new file mode 100644
index 000000000..382c4acba
--- /dev/null
+++ b/1205/CH3/EX3.10/S_3_10.sce
@@ -0,0 +1,40 @@
+clc;
+BE=[75,-150,50];//mm position vector BE
+F_B=700;//N*lambada_BE
+lambda_BE=BE/norm(BE);//mm,Unit vector
+lambda_BE=lambda_BE/1000;//m, Converting into meter
+
+// Using meters and newton
+r_BA=[0.075,0,0.05];//m
+r_CA=[0.075,0,-0.05];//m
+r_DA=[0.1,-0.1,0];//m
+F_B=[300,-600,200];//N
+F_C=[707,0,-707];//N
+F_D=[600,1039,0];//N
+
+//R=sum( F)
+
+R=F_B+F_C+F_D;//N , Resultant force
+printf("Resultant force can be shown as R= (%.2f N)i +(%.2f N)j +(%.2f N)k \n",R(1),R(2),R(3));
+
+// Componenets of moment M_BA along X,Y and Z direction respectively
+M_BAx=det([r_BA(2),r_BA(3); F_B(2), F_B(3)]);//N.m
+M_BAy=-det([r_BA(1),r_BA(3) ; F_B(1),F_B(3)]);//N.m
+M_BAz=det([r_BA(1),r_BA(2) ;F_B(1), F_B(2)]);// N.m
+M_BA=[M_BAx,M_BAy,M_BAz];
+
+// Componenets of moment M_CA along X,Y and Z direction respectively
+M_CAx=det([r_CA(2),r_CA(3); F_C(2), F_C(3)]);//N.m
+M_CAy=-det([r_CA(1),r_CA(3) ; F_C(1),F_C(3)]);//N.m
+M_CAz=det([r_CA(1),r_CA(2) ;F_C(1), F_C(2)]);// N.m
+M_CA=[M_CAx,M_CAy,M_CAz];
+
+// Componenets of moment M_DA along X,Y and Z direction respectively
+M_DAx=det([r_DA(2),r_DA(3); F_D(2), F_D(3)]);//N.m
+M_DAy=-det([r_DA(1),r_DA(3) ; F_D(1),F_D(3)]);//N.m
+M_DAz=det([r_DA(1),r_DA(2) ;F_D(1), F_D(2)]);// N.m
+M_DA=[M_DAx,M_DAy,M_DAz];
+
+//M_RA=sum(r*F)
+M_RA=M_BA+M_CA+M_DA;//N.m
+printf("Resultant moment can be shown as M_RA= (%.2f N)i +(%.2f N)j +(%.2f N)k ",M_RA(1),M_RA(2),M_RA(3));
diff --git a/1205/CH3/EX3.11/S_3_11.sce b/1205/CH3/EX3.11/S_3_11.sce
new file mode 100644
index 000000000..ad0802b27
--- /dev/null
+++ b/1205/CH3/EX3.11/S_3_11.sce
@@ -0,0 +1,30 @@
+clc;
+
+//Cross product i*j=k, k*j=-i, j*j=0.......1
+//Let say cross product r*f as M
+r1=[0,0,0];//m
+F1=-180;//N, j
+M1=[0,0,0];//kN.m
+
+r2=[3,0,0];//m, i
+F2=-54;//N j
+M2=[0,0,r2(1)*F2];//kN k
+
+r3=[3,0,1.5];//m
+F3=-36;//N,j
+M3=[-r3(3)*F3,0,r3(1)*F3];//kN.m
+
+r4=[1.2,0,3];//m
+F4=-90;//N,j
+M4=[-r4(3)*F4,0,r4(1)*F4];//kN.m
+
+R=F1+F2+F3+F4;//kN, resultant force
+M_RO=M1+M2+M3+M4;//kN.m
+
+//r*R=M_RO
+//r=xi+zk
+//R*x k-R*z i=M_RO
+x=M_RO(3)/R;//m,
+z=-M_RO(1)/R;//m
+
+printf("Resultant of given system of forces is R= %.2f kN at x= %.2f m, z=%.2f m \n",R,x,z);
diff --git a/1205/CH3/EX3.2/S_3_2.sce b/1205/CH3/EX3.2/S_3_2.sce
new file mode 100644
index 000000000..f7463f0a3
--- /dev/null
+++ b/1205/CH3/EX3.2/S_3_2.sce
@@ -0,0 +1,14 @@
+clc;
+// Given data
+F=800; // N , Force applied on bracket
+theta=60;// degree, angle made by lever with +ve X axis
+theta=theta*%pi/180;// Conversion of angle into radian
+r_AB=[-0.2, 0.16];//m vector drawn from B to A resolved in rectangular component
+F=[F*cos(theta), F*sin(theta)]//N , vector F resolved in rectangular component
+k=1;// Unit vector along Z axis
+
+// M_B=r_AB * F relation 3.7 from section 3.5
+M_B=det([r_AB; F])*k;// N.m
+printf("The moment of force 800 N about B is %.2f N.m . -ve sign shows its acting clockwise\n",M_B);
+
+
diff --git a/1205/CH3/EX3.3/S_3_3.sce b/1205/CH3/EX3.3/S_3_3.sce
new file mode 100644
index 000000000..8dc4bbd80
--- /dev/null
+++ b/1205/CH3/EX3.3/S_3_3.sce
@@ -0,0 +1,16 @@
+clc;
+// Given data
+P=40; // N , Force applied to shift lever
+alpha=25;// degree, angle made by force P with -ve X axis
+alpha=alpha*%pi/180;// Conversion of angle into radian
+x=0.2;//m , Hirizontal distance of A from B
+y=0.6;//m, Vertical distance of A from B
+
+
+Px=P*cos(theta);// N , horizontal component
+Py=P*sin(theta);//N , Vertical component
+
+M_B=-x*Px-y*Py//N.m , here negative signs are taken as each component creates moment clockwise
+printf("The moment of force P about B is %.2f N.m . -ve sign shows its acting clockwise\n",M_B);
+
+
diff --git a/1205/CH3/EX3.4/S_3_4.sce b/1205/CH3/EX3.4/S_3_4.sce
new file mode 100644
index 000000000..11d804457
--- /dev/null
+++ b/1205/CH3/EX3.4/S_3_4.sce
@@ -0,0 +1,24 @@
+clc;
+// Given data
+// M_A=r_CA * F relation 3.7 from section 3.5
+f=200; // N , Magnitude of Force directed along CD
+r_CA=[0.3,0, 0.08];//m, vector AC reprecsented in rectangular component
+//lambda=CD/norm(CD)-m, Unit vector along CD
+//F=f*lambda;//m, Force
+CD=[-0.3, 0.24, -0.32];//Vector CD resolved into rectangular component
+// norm(CD); m, magnitude of vector CD
+
+lambda=CD/norm(CD);//m, Unit vector along CD
+F=f*lambda;//m, Force
+// M_A=r_CA * F relation 3.7 from section 3.5
+//i=1; j=1; k=1; Unit vectors along X, Y and Z direction respectively
+
+// Componenets of moment M_A along X,Y and Z direction respectively
+M_Ax=det([r_CA(2),r_CA(3); F(2), F(3)]);//N.m
+M_Ay=-det([r_CA(1),r_CA(3) ; F(1),F(3)]);//N.m
+M_Az=det([r_CA(1),r_CA(2) ;F(1), F(2)]);// N.m
+
+printf("Answer can be written as M_B = %.2f N.m i + %.2f N.m j + %.2f N.m k \n",M_Ax,M_Ay,M_Az);
+
+
+
diff --git a/1205/CH3/EX3.5/S_3_5.sce b/1205/CH3/EX3.5/S_3_5.sce
new file mode 100644
index 000000000..485f608b5
--- /dev/null
+++ b/1205/CH3/EX3.5/S_3_5.sce
@@ -0,0 +1,32 @@
+clc;
+
+// Mo=r_BO * F_B relation 3.7 from section 3.5
+r_BO=[0,7,0];//m
+//F_B=T_AB+T_BC; N ,
+mT_AB=555;//N, Tension in Cable AB
+mT_BC=660;//N, Tension in cable AC
+CA=[0.3,0, 0.08];//m, vector AC reprecsented in rectangular component
+//lambda=CD/norm(CD)-m, Unit vector along CD
+//F=f*lambda;//m, Force
+BA=[-0.75,-7,6];//m, Position vector BA resolved into rectangular component
+BC=[4.25,-7,1];//m,Position vector BC resolved into rectangular component
+
+lambda_BA=BA/norm(BA);//m, Unit vector along BA
+T_AB=mT_AB*lambda_BA;//m, Force along cable AB
+
+lambda_BC=BC/norm(BC);//m, Unit vector along Bc
+T_BC=mT_BC*lambda_BC;//m, Force along cable BC
+
+F_B=T_AB+T_BC;// N
+// M_A=r_CA * F relation 3.7 from section 3.5
+//i=1; j=1; k=1; Unit vectors along X, Y and Z direction respectively
+
+// Componenets of moment M_A along X,Y and Z direction respectively
+M_Ax=det([r_BO(2),r_BO(3); F_B(2), F_B(3)]);//N.m
+M_Ay=-det([r_BO(1),r_BO(3) ; F_B(1),F_B(3)]);//N.m
+M_Az=det([r_BO(1),r_BO(2) ;F_B(1), F_B(2)]);// N.m
+
+printf("Answer can be written as M_B = %.2f N.m i + %.2f N.m j + %.2f N.m k \n",M_Ax,M_Ay,M_Az);
+
+
+
diff --git a/1205/CH3/EX3.6/S_3_6.sce b/1205/CH3/EX3.6/S_3_6.sce
new file mode 100644
index 000000000..644bfd191
--- /dev/null
+++ b/1205/CH3/EX3.6/S_3_6.sce
@@ -0,0 +1,17 @@
+clc;
+//Given data
+// Moment arms
+x=0.45;//m
+y=0.30;//m
+z=0.23;//m
+
+//couple Forces
+Fx=-150;//N
+Fy=100;//N
+Fz=100;//N
+
+Mx=Fx*x;//N.m, Component of Moment along X axis
+My=Fy*y;//N.m, Component of Moment along Y axis
+Mz=Fz*z;//N.m, Component of Moment along Z axis
+//This three moments represent component of single couple M
+printf("Couple M equivalent to two couple can be written as M = %.2f N.m i + %.2f N.m j + %.2f N.m k \n",Mx,My,Mz);
diff --git a/1205/CH3/EX3.7/S_3_7.sce b/1205/CH3/EX3.7/S_3_7.sce
new file mode 100644
index 000000000..325348336
--- /dev/null
+++ b/1205/CH3/EX3.7/S_3_7.sce
@@ -0,0 +1,12 @@
+clc;
+Mo=-24;//N.m *k, Couple of moment
+f=400;//N, Magnitude of force
+OB=300;//mm,Distance of force from point O
+theta=60;// degree, angle made by lever with +ve X axis
+theta=theta*%pi/180;// Conversion of angle into radian
+// Mo=BC_ * F relation 3.7 from section 3.5
+//BC_ * F=BC*f*cos(theta)------ Defination of cross product
+BC=Mo/(-cos(theta)*f);//m
+BC=BC*1000;//mm, Conversion into millimeter
+OC=OB+BC;//mm, Distance from the shaft to the point of application of this equivalenet force
+printf("Distance from the shaft to the point of application of this equivalenet single force is %.2f mm",OC)
diff --git a/1205/CH3/EX3.8/S_3_8.sce b/1205/CH3/EX3.8/S_3_8.sce
new file mode 100644
index 000000000..2dfa70479
--- /dev/null
+++ b/1205/CH3/EX3.8/S_3_8.sce
@@ -0,0 +1,24 @@
+clc;
+
+
+// Given forces with direction shown by sign -ve to downwards, +ve for upwards. j shows that firceis along y direction
+f1=150;//N, j
+f2=-600;//N, j
+f3=100;//N , j
+f4=-250;//N,j
+//a) force couple system at A
+R=f1+f2+f3+f4;//N, j Resultant force, sum of all forces
+//M_RA=sum(r*f)
+M_RA=1.6*f2+2.8*f3+4.8*f4;//m, k sum of moments by each force
+printf("Equivalent force couple system at A is thus R= %.2f N and M_RA= %.2f N.m \n",R,M_RA);
+//B) Force couple system at B
+BA=-4.8;//m, i
+M_RB=M_RA+BA*R;//N.m
+printf("Equivalent force couple system at B is thus R= %.2f N and M_RB= %.2f N.m \n",R,M_RB);
+
+//c)single force or resultant
+// r*R=M_RA
+
+//x.i * (-600N)j=-(1800N.m)k
+x=M_RA/R;//m, distance of point of application from A
+printf("Equivalent single force is defined as at R= %.2f N and acts at x= %.2f m \n",R,x);
diff --git a/1205/CH3/EX3.9/S_3_9.sce b/1205/CH3/EX3.9/S_3_9.sce
new file mode 100644
index 000000000..51a34d218
--- /dev/null
+++ b/1205/CH3/EX3.9/S_3_9.sce
@@ -0,0 +1,33 @@
+clc;
+// Resolving forces 125 N and 90 N
+f1=125;//N
+f2=90;//N
+f3=200;//N
+theta=45;// degree, angle made by f1 with x axis
+theta=theta*%pi/180;// Conversion of angle into radian
+alpha=30;// degree, angle made by force f2 with y axis
+alpha=alpha*%pi/180;// Conversion of angle into radian
+f1x=f1*cos(theta);//N, X component of 125 N.
+f1y=-f1*sin(theta);//N, Y component of 125 N
+
+f2x=-f2*sin(alpha);//N, X component of 90N
+f2y=-f2*cos(alpha);//N, Y component of 90N
+
+// Equivalent force at A
+Rx=f1x+f2x;//N
+Ry=f1y+f2y-f3;//N
+R=[Rx,Ry];//N
+R=norm(R);//N, magnitude of resultant
+theta=atan(Ry/Rx);//radian, angle of resultant with X axis
+theta=theta*180/%pi;
+
+printf("Equivalent force at A is R=%.2fN with angle %.2f Degrees \n ",R,theta);
+
+//equivalent couple at A
+//Clockwise moments are negative
+Meq=-550*f2*sin(35*%pi/180)-800*f3*sin(65*%pi/180)-1200*f1*sin(65*%pi/180);//N.mm , sum of all moments
+Meq=Meq/1000;// N.m conversion into N.m
+
+
+printf("Equivalent couple at A is Meq= %.2f N.m \n",Meq);
+