summaryrefslogtreecommitdiff
path: root/1092/CH13
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1092/CH13
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1092/CH13')
-rwxr-xr-x1092/CH13/EX13.1/Example13_1.sce27
-rwxr-xr-x1092/CH13/EX13.10/Example13_10.sce31
-rwxr-xr-x1092/CH13/EX13.11/Example13_11.sce30
-rwxr-xr-x1092/CH13/EX13.12/Example13_12.sce70
-rwxr-xr-x1092/CH13/EX13.2/Example13_2.sce27
-rwxr-xr-x1092/CH13/EX13.3/Example13_3.sce29
-rwxr-xr-x1092/CH13/EX13.4/Example13_4.sce45
-rwxr-xr-x1092/CH13/EX13.5/Example13_5.sce45
-rwxr-xr-x1092/CH13/EX13.6/Example13_6.sce33
-rwxr-xr-x1092/CH13/EX13.7/Example13_7.sce29
-rwxr-xr-x1092/CH13/EX13.8/Example13_8.sce38
-rwxr-xr-x1092/CH13/EX13.9/Example13_9.sce51
12 files changed, 455 insertions, 0 deletions
diff --git a/1092/CH13/EX13.1/Example13_1.sce b/1092/CH13/EX13.1/Example13_1.sce
new file mode 100755
index 000000000..751bee84a
--- /dev/null
+++ b/1092/CH13/EX13.1/Example13_1.sce
@@ -0,0 +1,27 @@
+// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 13: RATINGS,SELECTION,AND MAINTENANCE OF ELECTRIC MACHINERY
+// Example 13-1
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+// MOTOR(class A insulation ) is operated for 6 hrs
+T = 125 ; // Temperature in degree celsius recorded by the embedded detectors
+life_orig = 10 ; // Life in years of the motor (standard)
+
+// Calculations
+delta_T = T - 105 ; // Positive temperature difference between the given
+// max hottest spot temperature of its insulation and the ambient temperature recorded.
+// 105 is chosen from table 13-1(class A insulation)
+R = 2 ^ (delta_T/10); // Life reduction factor
+
+Life_calc = life_orig / R ; // Reduced life expectancy of the motor in years
+
+// Display the results
+disp("Example 13-1 Solution : ");
+printf(" \n Life reduction factor : R = %d \n ",R );
+printf(" \n Reduced life expectancy of the motor : Life_calc = %.1f years",Life_calc);
diff --git a/1092/CH13/EX13.10/Example13_10.sce b/1092/CH13/EX13.10/Example13_10.sce
new file mode 100755
index 000000000..ff3b925cb
--- /dev/null
+++ b/1092/CH13/EX13.10/Example13_10.sce
@@ -0,0 +1,31 @@
+// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 13: RATINGS,SELECTION,AND MAINTENANCE OF ELECTRIC MACHINERY
+// Example 13-10
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+// single phase alternator
+V_orig = 500 ; // Rated voltage of the alternator in volt
+kVA_orig = 20 ; // Rated power of the alternator in kVA
+I = 40 ; // Rated current of the alternator in A
+R = 2 ; // Armature resistance in ohm
+X = 15 ; // Armature reactance in ohm
+
+V_new = 5000 ; // New voltage of the alternator in volt
+kVA_new = 100 ; // New power of the alternator in kVA
+
+// Calculated armature impedance from Ex.13-9c
+Z_pu_orig = 1.211 ; // original per-unit value of armature impedance in p.u
+
+// Calculation
+Z_pu_new = Z_pu_orig * (kVA_new/kVA_orig) * (V_orig/V_new)^2 ;
+// new per-unit value of armature impedance in p.u
+
+// Display the results
+disp("Example 13-10 Solution : ");
+printf(" \n New per-unit value of armature impedance\n Z_pu(new) = %.5f p.u",Z_pu_new);
diff --git a/1092/CH13/EX13.11/Example13_11.sce b/1092/CH13/EX13.11/Example13_11.sce
new file mode 100755
index 000000000..77b115ae2
--- /dev/null
+++ b/1092/CH13/EX13.11/Example13_11.sce
@@ -0,0 +1,30 @@
+// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 13: RATINGS,SELECTION,AND MAINTENANCE OF ELECTRIC MACHINERY
+// Example 13-11
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+// 3-phase distribution system
+V = 2300 ; // Line voltage of 3-phase distribution system in volt
+V_p = 1328 ; // Phase voltage of 3-phase distribution system in volt
+
+V_b = 69000 ; // Common base line voltage in volt
+V_pb = 39840 ; // Common base phase voltage in volt
+
+// Calculations
+// case a
+V_pu_line = V / V_b ; // Distribution system p.u line voltage
+
+// case a
+V_pu_phase = V_p / V_pb ; // Distribution system p.u phase voltage
+
+// Display the results
+disp("Example 13-11 Solution : ");
+printf(" \n a: Distribution system p.u line voltage :\n V_pu = %.2f p.u\n",V_pu_line);
+
+printf(" \n b: Distribution system p.u phase voltage :\n V_pu = %.2f p.u\n",V_pu_phase);
diff --git a/1092/CH13/EX13.12/Example13_12.sce b/1092/CH13/EX13.12/Example13_12.sce
new file mode 100755
index 000000000..9441448c1
--- /dev/null
+++ b/1092/CH13/EX13.12/Example13_12.sce
@@ -0,0 +1,70 @@
+// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 13: RATINGS,SELECTION,AND MAINTENANCE OF ELECTRIC MACHINERY
+// Example 13-12
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+VA_b = 50 ; // Base power rating of the 3-phase Y-connected alternator in MVA
+V_b = 25 ; // Base voltage of the 3-phase Y-connected alternator in kV
+X_pu = 1.3 ; // per unit value of synchronous reactance
+R_pu = 0.05 ; // per unit value of resistance
+
+// Calculations
+// case a
+// subscript 1 for Z_b indicates method 1 for finding Z_b
+Z_b1 = (V_b)^2 / VA_b ; // Base impedance in ohm
+
+// subscript 2 for Z_b indicates method 2 for finding Z_b
+S_b = VA_b ; // Base power rating of the 3-phase Y-connected alternator in MVA
+I_b = (S_b)/V_b ; // Base current in kA
+Z_b2 = V_b / I_b ; // Base impedance in ohm
+
+// case b
+Z_b = Z_b1; // Base impedance in ohm
+X_s = X_pu * Z_b ; // Actual value of synchronous reactance per phase in ohm
+
+// case c
+R_a = R_pu * Z_b ; // Actual value of armature stator resistance per phase in ohm
+
+// case d
+// subscript 1 for Z_s indicates method 1 for finding Z_s
+Z_s1 = R_a + %i*X_s ; // Synchronous impedance per phase in ohm
+Z_s1_m = abs(Z_s1);//Z_s1_m = magnitude of Z_s1 in ohm
+Z_s1_a = atan(imag(Z_s1) /real(Z_s1))*180/%pi;//Z_s1_a=phase angle of Z_s1 in degrees
+
+// subscript 2 for Z_s indicates method 2 for finding Z_s
+Z_pu = R_pu + %i*X_pu ; // per unit value of impedance
+Z_s2 = Z_pu * Z_b ; // Synchronous impedance per phase in ohm
+Z_s2_m = abs(Z_s2);//Z_s2_m = magnitude of Z_s2 in ohm
+Z_s2_a = atan(imag(Z_s2) /real(Z_s2))*180/%pi;//Z_s2_a=phase angle of Z_s2 in degrees
+
+// case e
+S = S_b ; // Base power rating of the 3-phase Y-connected alternator in MVA
+P = S * R_pu ; // Full-load copper losses for all three phases in MW
+
+// Display the results
+disp("Example 13-12 Solution : ");
+
+printf(" \n a: Base impedance(method 1): \n Z_b = %.1f ohm\n",Z_b1);
+printf(" \n Base impedance(method 2) : ");
+printf(" \n I_b = %d kA \n Z_b = %.1f ohm\n",I_b,Z_b2);
+
+printf(" \n b: Actual value of synchronous reactance per phase : ");
+printf(" \n X_s in ohm = ");disp(%i*X_s);
+
+printf(" \n c: Actual value of armature stator resistance per phase : ");
+printf(" \n R_a = %.3f ohm \n ",R_a );
+
+printf(" \n d: Synchronous impedance per phase (method 1): ");
+printf(" \n Z_s in ohm = ");disp(Z_s1);
+printf(" \n Z_s = %.2f <%.1f ohm\n",Z_s1_m,Z_s1_a);
+printf(" \n Synchronous impedance per phase (method 2) : ");
+printf(" \n Z_s in ohm = ");disp(Z_s2);
+printf(" \n Z_s = %.2f <%.1f ohm\n",Z_s2_m,Z_s2_a);
+
+printf(" \n e: Full-load copper losses for all 3 phases : \n P = %.1f MW",P);
diff --git a/1092/CH13/EX13.2/Example13_2.sce b/1092/CH13/EX13.2/Example13_2.sce
new file mode 100755
index 000000000..3f962ee53
--- /dev/null
+++ b/1092/CH13/EX13.2/Example13_2.sce
@@ -0,0 +1,27 @@
+// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 13: RATINGS,SELECTION,AND MAINTENANCE OF ELECTRIC MACHINERY
+// Example 13-2
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+// MOTOR(class A insulation ) is operated for 6 hrs
+T = 75 ; // Temperature in degree celsius recorded by the embedded detectors
+life_orig = 10 ; // Life in years of the motor (standard)
+
+// Calculations
+delta_T = 105 - T ; // Positive temperature difference between the given
+// max hottest spot temperature of its insulation and the ambient temperature recorded.
+// 105 is chosen from table 13-1 (class A insulation)
+E = 2 ^ (delta_T/10); // Life extension factor
+
+Life_calc = life_orig * E ; // Increased life expectancy of the motor in years
+
+// Display the results
+disp("Example 13-2 Solution : ");
+printf(" \n Life extension factor : E = %d \n ",E );
+printf(" \n Increased life expectancy of the motor : Life_calc = %d years ",Life_calc);
diff --git a/1092/CH13/EX13.3/Example13_3.sce b/1092/CH13/EX13.3/Example13_3.sce
new file mode 100755
index 000000000..4cbc66eb6
--- /dev/null
+++ b/1092/CH13/EX13.3/Example13_3.sce
@@ -0,0 +1,29 @@
+// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 13: RATINGS,SELECTION,AND MAINTENANCE OF ELECTRIC MACHINERY
+// Example 13-3
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+// Class A insulation
+T_A = 105 ; // Temperature in degree celsius recorded by the embedded detectors
+life_orig = 5 ; // Life in years of the motor (standard)
+// Class B insulation
+T_B = 130 ; // Temperature in degree celsius recorded by the embedded detectors
+
+// Calculations
+delta_T = T_B - T_A ; // Positive temperature difference betw the given
+// max hottest spot temperature of its insulation and the ambient temperature recorded.
+// T_A and T_B are chosen from table 13-1
+E = 2 ^ (delta_T/10); // Life extension factor
+
+Life_calc = life_orig * E ; // Increased life expectancy of the motor in years
+
+// Display the results
+disp("Example 13-3 Solution : ");
+printf(" \n Life extension factor : E = %.2f \n ",E );
+printf(" \n Increased life expectancy of the motor : Life_calc = %.1f years ",Life_calc);
diff --git a/1092/CH13/EX13.4/Example13_4.sce b/1092/CH13/EX13.4/Example13_4.sce
new file mode 100755
index 000000000..8f3db574a
--- /dev/null
+++ b/1092/CH13/EX13.4/Example13_4.sce
@@ -0,0 +1,45 @@
+// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 13: RATINGS,SELECTION,AND MAINTENANCE OF ELECTRIC MACHINERY
+// Example 13-4
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+P_o = 25 ; // Rated power of SCIM in hp
+// class B insulation
+T_ambient = 40 ; // Standard ambient temperature recorded by the embedded hot-spot detectors in degree celsius
+T_hottest = 115 ; // Hottest-spot winding temperature recorded by the embedded hot-spot detectors in degree celsius
+
+// Calculations
+// case a
+// from table 13-1 allowable temperature rise in 90 degree celsius
+
+// case b
+T_rise = T_hottest - T_ambient ; // Actual temperature rise for the insulation type used in degree celsius
+
+// case c
+P_f = P_o * (90/T_rise); // Approximate power to the motor that can be delivered at T_rise
+
+// case d
+// same as P_f
+
+// case e
+// answer from case a
+
+// Display the results
+disp("Example 13-4 Solution : ");
+printf(" \n a: The allowable temperature rise for the ");
+printf(" \n insulation type used = 90 degree celsius(from table 13-1)\n");
+
+printf(" \n b: The actual temperature rise for the insulation type used = %d degree celsius\n",T_rise);
+
+printf(" \n c: The approximate power to the motor that can be delivered at T_rise");
+printf(" \n P_f = %d hp\n",P_f);
+
+printf(" \n d: Power rating that may be stamped on the nameplate = %d hp(subject to test at this load) \n ",P_f);
+
+printf(" \n e: The temperature rise that must be stamped on the nameplate = 90 degree celsius");
diff --git a/1092/CH13/EX13.5/Example13_5.sce b/1092/CH13/EX13.5/Example13_5.sce
new file mode 100755
index 000000000..913e7ed13
--- /dev/null
+++ b/1092/CH13/EX13.5/Example13_5.sce
@@ -0,0 +1,45 @@
+// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 13: RATINGS,SELECTION,AND MAINTENANCE OF ELECTRIC MACHINERY
+// Example 13-5
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+P_o = 50 ; // Power rating of the WRIM in hp
+// Class F insulation
+T_hottest = 160 ; // Hottest-spot winding temperature recorded by the embedded
+// hot-spot detectors in degree celsius
+T_ambient = 40 ; // Standard ambient temperature recorded by the embedded
+// hot-spot detectors in degree celsius
+P_f_a = 40 ; // Power rating of load a in hp
+P_f_b = 55 ; // Power rating of load a in hp
+
+// Calculations
+// case a
+delta_T_o = T_hottest - T_ambient ; // Temperature rise for the insulation type
+// used in degree celsius
+
+// subscript a in delta_T_f ,P_f_a and T_f indicates case a
+delta_T_f_a = (P_f_a/P_o)*delta_T_o ; // final temperature rise in degree celsius
+T_f_a = delta_T_f_a + T_ambient ; // Approximate final hot-spot temperature in degree celsius
+
+// case b
+// subscript b in delta_T_f ,P_f and T_f indicates case b
+delta_T_f_b = (P_f_b/P_o)*delta_T_o ; // final temperature rise in degree celsius
+T_f_b = delta_T_f_b + T_ambient ; // Approximate final hot-spot temperature in degree celsius
+
+// Display the results
+disp("Example 13-5 Solution : ");
+printf(" \n a: ΔT_o = %d degree celsius ",delta_T_o);
+printf(" \n ΔT_f = %d degree celsius ",delta_T_f_a);
+printf(" \n T_f = %d degree celsius \n",T_f_a);
+
+printf(" \n b: ΔT_f = %d degree celsius ",delta_T_f_b);
+printf(" \n T_f = %d degree celsius \n",T_f_b);
+printf(" \n Yes,motor life is reduced at the 110 percent motor load because");
+printf(" \n the allowable maximum hot-spot motor temperature for Class F");
+printf(" \n insulation is 155 degree celsius.");
diff --git a/1092/CH13/EX13.6/Example13_6.sce b/1092/CH13/EX13.6/Example13_6.sce
new file mode 100755
index 000000000..75903fe46
--- /dev/null
+++ b/1092/CH13/EX13.6/Example13_6.sce
@@ -0,0 +1,33 @@
+// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 13: RATINGS,SELECTION,AND MAINTENANCE OF ELECTRIC MACHINERY
+// Example 13-6
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+P_o = 55 ; // Power rating of the WRIM in hp
+T_ambient = 40 ; // Standard ambient temperature recorded by the embedded
+// hot-spot detectors in degree celsius
+life_orig = 10 ; // Life in years of the motor (standard)
+
+// Calculated data from Ex.13-5b
+T_f = 172 ; // Approximate final hot-spot temperature in degree celsius
+
+// Calculations
+delta_T = T_f - 155 ; // Positive temperature difference betw the given
+// max hottest spot temperature of its insulation and the ambient temperature recorded.
+// 155 is chosen from table 13-1(class F insulation)
+
+R = 2 ^ (delta_T/10); // Life reduction factor
+
+Life_calc = life_orig / R ; // Reduced life expectancy of the motor in years
+
+// Display the results
+disp("Example 13-6 Solution : ");
+printf(" \n From Ex.13-5b,T_f = %d degree celsius\n",T_f);
+printf(" \n Life reduction factor : R = %.2f \n ",R );
+printf(" \n Reduced life expectancy of the motor : Life_calc = %.2f years",Life_calc);
diff --git a/1092/CH13/EX13.7/Example13_7.sce b/1092/CH13/EX13.7/Example13_7.sce
new file mode 100755
index 000000000..710731bf6
--- /dev/null
+++ b/1092/CH13/EX13.7/Example13_7.sce
@@ -0,0 +1,29 @@
+// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 13: RATINGS,SELECTION,AND MAINTENANCE OF ELECTRIC MACHINERY
+// Example 13-7
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+P_o = 200 ; // Power rating of the test motor in hp
+t1 = 5 ; // time duration in minutes for which test motor is operated at 200 hp
+t2 = 5 ; // time duration in minutes for which test motor is operated at 20 hp
+t3 = 10 ; // time duration in minutes for which test motor is operated at 100 hp
+
+// Calculation
+rms_hp = sqrt( ( (200^2)*t1 + (20^2)*t2 + (100^2)*t3 )/(t1 + t2 + t3 + 10/3) );
+// Horsepower required for intermittent varying load
+
+// Display the results
+disp("Example 13-7 Solution : ");
+printf(" \n Horsepower required for intermittent varying load is : ");
+printf(" \n rms hp = %.f hp \n ",rms_hp);
+
+printf(" \n A 125 hp motor would be selected because that is the nearest larger");
+printf(" \n commercial standard rating.This means that the motor would operate ");
+printf(" \n with a 160 percent overload (at 200 hp) for 5 minutes,or 1/6th of ")
+printf(" \n its total duty cycle.");
diff --git a/1092/CH13/EX13.8/Example13_8.sce b/1092/CH13/EX13.8/Example13_8.sce
new file mode 100755
index 000000000..d754c00fc
--- /dev/null
+++ b/1092/CH13/EX13.8/Example13_8.sce
@@ -0,0 +1,38 @@
+// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 13: RATINGS,SELECTION,AND MAINTENANCE OF ELECTRIC MACHINERY
+// Example 13-8
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+V = 120 ; // Rated output voltage in volt of separately excited dc generator
+I = 100 ; // Rated output current in A of separately excited dc generator
+R = 0.1 ; // Armature resistance in ohm
+
+// Calculations
+// case a
+V_b = V ; // base voltage in volt
+
+// case b
+I_b = I ; // base current in A
+
+// case c
+R_b = V_b / I_b ; // base resistance in ohm
+
+// case d
+R_pu = R / R_b ; // per-unit value of armature resistance in p.u
+
+// Display the results
+disp("Example 13-8 Solution : ");
+
+printf(" \n a: Base voltage \n V_b = %d V \n ", V_b );
+
+printf(" \n b: Base current \n I_b = %d A \n ", I_b );
+
+printf(" \n c: Base resistance \n R_b = %.1f ohm \n ", R_b );
+
+printf(" \n d: Per-unit value of armature resistance\n R_p.u = %.3f p.u \n ", R_pu );
diff --git a/1092/CH13/EX13.9/Example13_9.sce b/1092/CH13/EX13.9/Example13_9.sce
new file mode 100755
index 000000000..3643c9a36
--- /dev/null
+++ b/1092/CH13/EX13.9/Example13_9.sce
@@ -0,0 +1,51 @@
+// Electric Machinery and Transformers
+// Irving L kosow
+// Prentice Hall of India
+// 2nd editiom
+
+// Chapter 13: RATINGS,SELECTION,AND MAINTENANCE OF ELECTRIC MACHINERY
+// Example 13-9
+
+clear; clc; close; // Clear the work space and console.
+
+// Given data
+// single phase alternator
+V = 500 ; // Rated voltage of the alternator in volt
+P = 20 ; // Rated power of the alternator in kVA
+I = 40 ; // Rated current of the alternator in A
+R = 2 ; // Armature resistance in ohm
+X = 15 ; // Armature reactance in ohm
+
+// Calculations
+// case a
+V_b = V ; // base voltage in volt
+I_b = I ; // base current in A
+R_pu = (R*I_b)/V_b ; // per-unit value of armature resistance in p.u
+
+// case b
+jX_pu = (X*I_b)/V_b ; // per-unit value of armature reactance in p.u
+
+// case c
+// subscript 1 indicates method 1 for finding Z_p.u
+Z_pu1 = R_pu + %i*(jX_pu); // per-unit value of armature impedance in p.u
+Z_pu1_m = abs(Z_pu1);//Z_pu1_m = magnitude of Z_pu1 in p.u
+Z_pu1_a = atan(imag(Z_pu1) /real(Z_pu1))*180/%pi;//Z_pu1_a=phase angle of Z_pu1 in degrees
+
+// subscript 2 indicates method 2 for finding Z_p.u
+Z_pu2 = (R + %i*X)*(I/V); // per-unit value of armature impedance in p.u
+Z_pu2_m = abs(Z_pu2);//Z_pu2_m = magnitude of Z_pu2 in p.u
+Z_pu2_a = atan(imag(Z_pu2) /real(Z_pu2))*180/%pi;//Z_pu2_a=phase angle of Z_pu2 in degrees
+
+// Display the results
+disp("Example 13-9 Solution : ");
+
+printf(" \n a: Armature resistance per unit value\n R_p.u = %.2f p.u \n",R_pu);
+
+printf(" \n b: Armature reactance per unit value\n jX_p.u in p.u = ");disp(%i*jX_pu);
+
+printf(" \n c: Armature impedance per unit value\n");
+printf(" \n (method 1)\n Z_p.u in p.u = ");disp(Z_pu1);
+printf(" \n Z_p.u = %.3f <%.1f p.u \n",Z_pu1_m,Z_pu1_a );
+
+printf(" \n (method 2)\n Z_p.u in p.u = ");disp(Z_pu2);
+printf(" \n Z_p.u = %.3f <%.1f p.u \n",Z_pu2_m,Z_pu2_a );