summaryrefslogtreecommitdiff
path: root/1040/CH5
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1040/CH5
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1040/CH5')
-rw-r--r--1040/CH5/EX5.1/Chapter5_Ex1_Plot_1.pdfbin0 -> 64837 bytes
-rw-r--r--1040/CH5/EX5.1/Chapter5_Ex1_Plot_2.pdfbin0 -> 66211 bytes
-rw-r--r--1040/CH5/EX5.1/Ex5_1.sce74
-rw-r--r--1040/CH5/EX5.2/Chapter5_Ex2_Output.txt2
-rw-r--r--1040/CH5/EX5.2/Ex5_2.sce32
-rw-r--r--1040/CH5/EX5.3/Chapter5_Ex3_Output.txt21
-rw-r--r--1040/CH5/EX5.3/Ex5_3.sce123
7 files changed, 252 insertions, 0 deletions
diff --git a/1040/CH5/EX5.1/Chapter5_Ex1_Plot_1.pdf b/1040/CH5/EX5.1/Chapter5_Ex1_Plot_1.pdf
new file mode 100644
index 000000000..25e767405
--- /dev/null
+++ b/1040/CH5/EX5.1/Chapter5_Ex1_Plot_1.pdf
Binary files differ
diff --git a/1040/CH5/EX5.1/Chapter5_Ex1_Plot_2.pdf b/1040/CH5/EX5.1/Chapter5_Ex1_Plot_2.pdf
new file mode 100644
index 000000000..0eeb75fb8
--- /dev/null
+++ b/1040/CH5/EX5.1/Chapter5_Ex1_Plot_2.pdf
Binary files differ
diff --git a/1040/CH5/EX5.1/Ex5_1.sce b/1040/CH5/EX5.1/Ex5_1.sce
new file mode 100644
index 000000000..f05fee90e
--- /dev/null
+++ b/1040/CH5/EX5.1/Ex5_1.sce
@@ -0,0 +1,74 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc. USA,pp 436
+//Chapter-5 Ex5.1 Pg No. 185
+//Title: Temperature Profiles for tubular reactor
+//==========================================================================================================
+clear
+clc
+clf
+//INPUT
+delta_H=-25000;//(kcal/mol) Enthalpy
+D=2;//(cm)Diameter of Tubular Reactor
+C_A0=0.002;//(mol/cm3) Initial concentration of feed
+k=0.00142;//(s-1) Rate Constant
+E_by_R=15000;//(K-1)
+rho=0.8;//(g/cm3)
+c_p= 0.5;// (cal/g°C)
+U=0.025;//(cal/sec cm2°C )
+u=60;//(cm/s)
+
+
+//CALCULATION
+function diffeqn = Simul_diff_eqn(l,y,T_j)
+ diffeqn(1) =(k*exp(E_by_R*((1/T_initial)-(1/y(2)))))*(1-y(1))/u;// Derivative for the first variable
+ diffeqn(2) =(C_A0*(k*exp(E_by_R*((1/T_initial)-(1/y(2)))))*(1-y(1))*(-1*delta_H)-U*(4/D)*(y(2)-T_j))/(u*rho*c_p) ; // Derivative for the second variable
+endfunction
+
+// =======================================
+
+T_j_data = [ 348 349 350 351];
+m = length(T_j_data);
+n = 1;
+while n <= m
+T_j = T_j_data(n)
+T_initial=340;// for rate constant
+x0=0;
+T0=344;
+l0=0;
+l=0:0.1E2:70E2;
+y = ode([x0;T0],l0,l,list(Simul_diff_eqn,T_j));
+x_data(n,:) = y(1,:);
+T_data(n,:) = y(2,:);
+n = n + 1;
+end
+// ================================
+scf(0)
+plot(l,T_data(1,:),'r-',l,T_data(2,:),'b-',l,T_data(3,:),'k-',l,T_data(4,:),'g-')
+xtitle('Temperature Profiles for a jacketed tubular reactor')
+xlabel("Length (cm)")
+ylabel("Temperature (K)")
+legend(['348';'349';'350';'351']);
+
+scf(1)
+plot(l,x_data(1,:),'r-',l,x_data(2,:),'b-',l,x_data(3,:),'k-',l,x_data(4,:),'g-')
+xtitle('Conversion for a jacketed tubular reactor');
+xlabel("Length (cm)")
+ylabel("Conversion")
+legend(['348';'349';'350';'351']);
+
+//OUTPUT
+mprintf('\n The Temperature profiles for four feed temperatures are plotted');
+mprintf('\n For T0:348 K attains its maximum temperature at conversion of about 25%%-30%%');
+mprintf('\n At T0:351 K the temperature increases by 6.5°C high senstivity that the reactor is nearing unstable');
+
+//FILE OUTPUT
+fid= mopen('.\Chapter5-Ex1-Output.txt','w');
+mfprintf(fid,'\n The Temperature profiles for four feed temperatures are plotted.');
+mfprintf(fid,'\n For T0:348 K attains its maximum temperature at conversion of about 25%%-30%%');
+mfprintf(fid,'\n At T0:351 K the temperature increases by 6.5°C high senstivity that the reactor is nearing unstable');
+mclose(fid);
+
+//===================================================END OF PROGRAM======================================================
+
+
+
+
diff --git a/1040/CH5/EX5.2/Chapter5_Ex2_Output.txt b/1040/CH5/EX5.2/Chapter5_Ex2_Output.txt
new file mode 100644
index 000000000..f8756898e
--- /dev/null
+++ b/1040/CH5/EX5.2/Chapter5_Ex2_Output.txt
@@ -0,0 +1,2 @@
+
+ The maximum internal temperature difference 1.264 °C \ No newline at end of file
diff --git a/1040/CH5/EX5.2/Ex5_2.sce b/1040/CH5/EX5.2/Ex5_2.sce
new file mode 100644
index 000000000..48486f8b9
--- /dev/null
+++ b/1040/CH5/EX5.2/Ex5_2.sce
@@ -0,0 +1,32 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-5 Ex5.2 Pg No. 194
+//Title: Maximum internal temperature difference
+//=============================================================================================================
+clear
+format(16)
+clc
+//INPUT
+T_C=200;//Temperature(°C)
+P=1.2;//Pressure (atm)
+f_ethylene=0.05;//fraction of ethylene
+k_s=8*10^(-4);//Solid conductivity (cal/sec cm°C)
+D_e=0.02;//Diffusivity for ethylene (cm2/s)
+del_H= -32.7*10^(3);//Heat of reaction (cal)
+V_ref=22400;// reference volume(cm3)
+T_ref=273;//Reference Temperature (K)
+P_ref=1;//Reference Pressure (atm)
+T_K=T_C+273;//Reaction Temperature (K)
+
+//CALCULATION
+C_s=f_ethylene*P*T_ref/(V_ref*T_K*P_ref);
+Tc_minus_Ts=D_e*C_s*(-del_H)/k_s;//Refer equation 5.51 Pg No. 194
+
+//OUTPUT
+mprintf('\n\tThe maximum internal temperature difference %0.3f °C',Tc_minus_Ts);
+
+//FILE OUTPUT
+fid= mopen('.\Chapter5-Ex2-Output.txt','w');
+mfprintf(fid,'\n\tThe maximum internal temperature difference %0.3f °C',Tc_minus_Ts);
+mclose(fid);
+
+//=====================================================END OF PROGRAM=================================================
diff --git a/1040/CH5/EX5.3/Chapter5_Ex3_Output.txt b/1040/CH5/EX5.3/Chapter5_Ex3_Output.txt
new file mode 100644
index 000000000..cc13ed577
--- /dev/null
+++ b/1040/CH5/EX5.3/Chapter5_Ex3_Output.txt
@@ -0,0 +1,21 @@
+
+ OUTPUT Ex5.3.a
+==========================================================
+The Overall Heat transfer coefficient for given Velocities
+==========================================================
+ u(velocity) U
+ (ft/s) (cal/cm2 sec K)
+==========================================================
+ 1.5 2.704991E-03
+ 3.0 4.240314E-03
+
+
+ OUTPUT Ex5.3.b
+==========================================================
+The Peak Radial average bed temperature for given Velocities
+==========================================================
+ u(velocity) delta_T
+ (ft/s) (°C)
+==========================================================
+ 1.5 25
+ 3.0 16 \ No newline at end of file
diff --git a/1040/CH5/EX5.3/Ex5_3.sce b/1040/CH5/EX5.3/Ex5_3.sce
new file mode 100644
index 000000000..8e94e72a7
--- /dev/null
+++ b/1040/CH5/EX5.3/Ex5_3.sce
@@ -0,0 +1,123 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-5 Ex5.3 Pg No. 209
+//Title:Overall heat transfer coefficients and radial average bed temperature for packed bed reactor
+//=============================================================================================================
+clear
+clc
+
+// COMMON INPUT
+k_s= 8*10^(-4);//(cal/sec cm°C)
+M_air_avg=29.24;// Average Molecular weight of air
+Cp_air_mol=7.91;// cal/mol°C;
+Cp_air_g=Cp_air_mol/M_air_avg;//cal/g°C
+dp=0.4;//Size of the catalyst pellet (cm)
+D=3.8;//Diameter of tube (cm)
+R_pellet=D/2;//Radius
+f_EO=0.7;//Fraction of ethylene forming ethylene oxide
+f_CO2_H2O=1-f_EO;//Fraction of ethylene forming CO2 and H2O
+rho_p=2.5;//Density of catalyst particle (g/cm3)
+V_ref=22400;//Reference volume(cm3)
+T_ref=273;// Reference Temperature (K)
+P_ref=1;//Reference Pressure (atm)
+P=5;//System Pressure (atm)
+T_C=230;//System Temperature (°C)
+T=T_C+273;//System Temperature (K)
+u_ft=[1.5 3];//Velocity (ft/s)
+myu=0.026*(10^(-2));//Viscosity of air (Poise)
+M_wt=[28 32 44 28];//Molecular weight
+M_fraction=[0.04 0.07 0.06 0.83];
+Cp=[15.3 7.4 10.7 7.4];//(cal/mol°C)
+k_g=9.27*10^(-5);//(cal/sec cm°C)
+del_H_rxn=[-29.9 -317];//(kcal/mol)
+E=18*1000;//Activation Energy (cal)
+R=1.987;//Gas Constant (cal/K.mol)
+
+//CALCULATION (Ex5.3.a)
+rho=M_air_avg*P*T_ref/(V_ref*P_ref*T);
+u=30.533.*u_ft;//Velocity in (cm/s)
+Re_p=(rho*dp/myu).*u;
+Pr=Cp_air_g*myu/k_g;
+ks_by_kg=k_s/k_g;
+k0e_by_kg=3.5;//From figure 5.16 Pg. No. 203
+kr_by_kg=2.5;//From equation 5.68 and 5.69 Pg. No. 204
+for i=1:2
+ ktd_by_k_air(i)=(0.1*Pr)*Re_p(i);
+ke_by_kg(i)=(k0e_by_kg+kr_by_kg)+ktd_by_k_air(i);
+k_e(i)=ke_by_kg(i)*k_g;
+h_bed(i)=4*k_e(i)/R_pellet;
+Nu_w(i)=(1.94*Pr^(0.33))*Re_p(i)^(0.5);//Refer equation 5.83 Pg. No. 208
+h_w(i)=(k_g/dp)*Nu_w(i);//(cal/sec cm2 K)
+h_j=100*10^(-3);//Assumed
+ U(i)=1/((1/h_j)+(1/h_w(i))+(1/h_bed(i)));
+end
+
+//CALCULATION (Ex5.3.b)
+minus_delH=f_EO*(-del_H_rxn(1))+f_CO2_H2O*(-del_H_rxn(2));
+T_max=T+20;
+del_Tc= R*(T_max)^2/E;
+T_new=250 +273;
+X_E=0.1;
+k250_by_k230=exp((E/R)*((1/T)-(1/T_new)));
+P_E=P*(1-X_E)*M_fraction(1);
+P_O2=P*(1-f_EO*X_E)*M_fraction(2);
+P_CO2=P*(1+f_CO2_H2O*X_E)*M_fraction(3);
+r=k250_by_k230*((0.076*P_E*P_O2)/(1+2*P_E+15*P_CO2));
+Q_dash=r*minus_delH*10^3/3600;
+epsilon=0.4;
+rho_bed=rho_p*(1-0.4);
+A_percm3=4/D;
+Q=(Q_dash*rho_bed)
+for i=1:2
+ delta_T(i)=(Q/A_percm3)*(1/U(i));
+end
+
+//OUTPUT ((Ex5.3.a))
+mprintf('\n OUTPUT Ex5.3.a');
+mprintf('\n==========================================================')
+mprintf('\nThe Overall Heat transfer coefficient for given Velocities' )
+mprintf('\n==========================================================')
+mprintf('\n u(velocity) U')
+mprintf('\n (ft/s) (cal/cm2 sec K)')
+mprintf('\n==========================================================')
+for i=1:2
+ mprintf('\n %0.1f %3E',u_ft(i),U(i))
+end
+
+//OUTPUT ((Ex5.3.b)
+mprintf('\n\n\n OUTPUT Ex5.3.b');
+mprintf('\n==========================================================')
+mprintf('\nThe Peak Radial average bed temperature for given Velocities' )
+mprintf('\n==========================================================')
+mprintf('\n u(velocity) delta_T')
+mprintf('\n (ft/s) (°C)')
+mprintf('\n==========================================================')
+for i=1:2
+ mprintf('\n %0.1f \t \t %0.0f',u_ft(i),delta_T(i))
+end
+
+//FILE OUTPUT
+fid= mopen('.\Chapter5-Ex3-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex5.3.a');
+mfprintf(fid,'\n==========================================================')
+mfprintf(fid,'\nThe Overall Heat transfer coefficient for given Velocities' )
+mfprintf(fid,'\n==========================================================')
+mfprintf(fid,'\n u(velocity) U')
+mfprintf(fid,'\n (ft/s) (cal/cm2 sec K)')
+mfprintf(fid,'\n==========================================================')
+for i=1:2
+ mfprintf(fid,'\n %0.1f %3E',u_ft(i),U(i))
+end
+mfprintf(fid,'\n\n\n OUTPUT Ex5.3.b');
+mfprintf(fid,'\n==========================================================')
+mfprintf(fid,'\nThe Peak Radial average bed temperature for given Velocities' )
+mfprintf(fid,'\n==========================================================')
+mfprintf(fid,'\n u(velocity) delta_T')
+mfprintf(fid,'\n (ft/s) (°C)')
+mfprintf(fid,'\n==========================================================')
+for i=1:2
+ mfprintf(fid,'\n %0.1f \t \t %0.0f',u_ft(i),delta_T(i))
+end
+mclose(fid);
+//===============================================END OF PROGRAM=======================================================
+
+