From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1040/CH5/EX5.1/Chapter5_Ex1_Plot_1.pdf | Bin 0 -> 64837 bytes 1040/CH5/EX5.1/Chapter5_Ex1_Plot_2.pdf | Bin 0 -> 66211 bytes 1040/CH5/EX5.1/Ex5_1.sce | 74 ++++++++++++++++++++ 1040/CH5/EX5.2/Chapter5_Ex2_Output.txt | 2 + 1040/CH5/EX5.2/Ex5_2.sce | 32 +++++++++ 1040/CH5/EX5.3/Chapter5_Ex3_Output.txt | 21 ++++++ 1040/CH5/EX5.3/Ex5_3.sce | 123 +++++++++++++++++++++++++++++++++ 7 files changed, 252 insertions(+) create mode 100644 1040/CH5/EX5.1/Chapter5_Ex1_Plot_1.pdf create mode 100644 1040/CH5/EX5.1/Chapter5_Ex1_Plot_2.pdf create mode 100644 1040/CH5/EX5.1/Ex5_1.sce create mode 100644 1040/CH5/EX5.2/Chapter5_Ex2_Output.txt create mode 100644 1040/CH5/EX5.2/Ex5_2.sce create mode 100644 1040/CH5/EX5.3/Chapter5_Ex3_Output.txt create mode 100644 1040/CH5/EX5.3/Ex5_3.sce (limited to '1040/CH5') diff --git a/1040/CH5/EX5.1/Chapter5_Ex1_Plot_1.pdf b/1040/CH5/EX5.1/Chapter5_Ex1_Plot_1.pdf new file mode 100644 index 000000000..25e767405 Binary files /dev/null and b/1040/CH5/EX5.1/Chapter5_Ex1_Plot_1.pdf differ diff --git a/1040/CH5/EX5.1/Chapter5_Ex1_Plot_2.pdf b/1040/CH5/EX5.1/Chapter5_Ex1_Plot_2.pdf new file mode 100644 index 000000000..0eeb75fb8 Binary files /dev/null and b/1040/CH5/EX5.1/Chapter5_Ex1_Plot_2.pdf differ diff --git a/1040/CH5/EX5.1/Ex5_1.sce b/1040/CH5/EX5.1/Ex5_1.sce new file mode 100644 index 000000000..f05fee90e --- /dev/null +++ b/1040/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,74 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc. USA,pp 436 +//Chapter-5 Ex5.1 Pg No. 185 +//Title: Temperature Profiles for tubular reactor +//========================================================================================================== +clear +clc +clf +//INPUT +delta_H=-25000;//(kcal/mol) Enthalpy +D=2;//(cm)Diameter of Tubular Reactor +C_A0=0.002;//(mol/cm3) Initial concentration of feed +k=0.00142;//(s-1) Rate Constant +E_by_R=15000;//(K-1) +rho=0.8;//(g/cm3) +c_p= 0.5;// (cal/g°C) +U=0.025;//(cal/sec cm2°C ) +u=60;//(cm/s) + + +//CALCULATION +function diffeqn = Simul_diff_eqn(l,y,T_j) + diffeqn(1) =(k*exp(E_by_R*((1/T_initial)-(1/y(2)))))*(1-y(1))/u;// Derivative for the first variable + diffeqn(2) =(C_A0*(k*exp(E_by_R*((1/T_initial)-(1/y(2)))))*(1-y(1))*(-1*delta_H)-U*(4/D)*(y(2)-T_j))/(u*rho*c_p) ; // Derivative for the second variable +endfunction + +// ======================================= + +T_j_data = [ 348 349 350 351]; +m = length(T_j_data); +n = 1; +while n <= m +T_j = T_j_data(n) +T_initial=340;// for rate constant +x0=0; +T0=344; +l0=0; +l=0:0.1E2:70E2; +y = ode([x0;T0],l0,l,list(Simul_diff_eqn,T_j)); +x_data(n,:) = y(1,:); +T_data(n,:) = y(2,:); +n = n + 1; +end +// ================================ +scf(0) +plot(l,T_data(1,:),'r-',l,T_data(2,:),'b-',l,T_data(3,:),'k-',l,T_data(4,:),'g-') +xtitle('Temperature Profiles for a jacketed tubular reactor') +xlabel("Length (cm)") +ylabel("Temperature (K)") +legend(['348';'349';'350';'351']); + +scf(1) +plot(l,x_data(1,:),'r-',l,x_data(2,:),'b-',l,x_data(3,:),'k-',l,x_data(4,:),'g-') +xtitle('Conversion for a jacketed tubular reactor'); +xlabel("Length (cm)") +ylabel("Conversion") +legend(['348';'349';'350';'351']); + +//OUTPUT +mprintf('\n The Temperature profiles for four feed temperatures are plotted'); +mprintf('\n For T0:348 K attains its maximum temperature at conversion of about 25%%-30%%'); +mprintf('\n At T0:351 K the temperature increases by 6.5°C high senstivity that the reactor is nearing unstable'); + +//FILE OUTPUT +fid= mopen('.\Chapter5-Ex1-Output.txt','w'); +mfprintf(fid,'\n The Temperature profiles for four feed temperatures are plotted.'); +mfprintf(fid,'\n For T0:348 K attains its maximum temperature at conversion of about 25%%-30%%'); +mfprintf(fid,'\n At T0:351 K the temperature increases by 6.5°C high senstivity that the reactor is nearing unstable'); +mclose(fid); + +//===================================================END OF PROGRAM====================================================== + + + + diff --git a/1040/CH5/EX5.2/Chapter5_Ex2_Output.txt b/1040/CH5/EX5.2/Chapter5_Ex2_Output.txt new file mode 100644 index 000000000..f8756898e --- /dev/null +++ b/1040/CH5/EX5.2/Chapter5_Ex2_Output.txt @@ -0,0 +1,2 @@ + + The maximum internal temperature difference 1.264 °C \ No newline at end of file diff --git a/1040/CH5/EX5.2/Ex5_2.sce b/1040/CH5/EX5.2/Ex5_2.sce new file mode 100644 index 000000000..48486f8b9 --- /dev/null +++ b/1040/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,32 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436. +//Chapter-5 Ex5.2 Pg No. 194 +//Title: Maximum internal temperature difference +//============================================================================================================= +clear +format(16) +clc +//INPUT +T_C=200;//Temperature(°C) +P=1.2;//Pressure (atm) +f_ethylene=0.05;//fraction of ethylene +k_s=8*10^(-4);//Solid conductivity (cal/sec cm°C) +D_e=0.02;//Diffusivity for ethylene (cm2/s) +del_H= -32.7*10^(3);//Heat of reaction (cal) +V_ref=22400;// reference volume(cm3) +T_ref=273;//Reference Temperature (K) +P_ref=1;//Reference Pressure (atm) +T_K=T_C+273;//Reaction Temperature (K) + +//CALCULATION +C_s=f_ethylene*P*T_ref/(V_ref*T_K*P_ref); +Tc_minus_Ts=D_e*C_s*(-del_H)/k_s;//Refer equation 5.51 Pg No. 194 + +//OUTPUT +mprintf('\n\tThe maximum internal temperature difference %0.3f °C',Tc_minus_Ts); + +//FILE OUTPUT +fid= mopen('.\Chapter5-Ex2-Output.txt','w'); +mfprintf(fid,'\n\tThe maximum internal temperature difference %0.3f °C',Tc_minus_Ts); +mclose(fid); + +//=====================================================END OF PROGRAM================================================= diff --git a/1040/CH5/EX5.3/Chapter5_Ex3_Output.txt b/1040/CH5/EX5.3/Chapter5_Ex3_Output.txt new file mode 100644 index 000000000..cc13ed577 --- /dev/null +++ b/1040/CH5/EX5.3/Chapter5_Ex3_Output.txt @@ -0,0 +1,21 @@ + + OUTPUT Ex5.3.a +========================================================== +The Overall Heat transfer coefficient for given Velocities +========================================================== + u(velocity) U + (ft/s) (cal/cm2 sec K) +========================================================== + 1.5 2.704991E-03 + 3.0 4.240314E-03 + + + OUTPUT Ex5.3.b +========================================================== +The Peak Radial average bed temperature for given Velocities +========================================================== + u(velocity) delta_T + (ft/s) (°C) +========================================================== + 1.5 25 + 3.0 16 \ No newline at end of file diff --git a/1040/CH5/EX5.3/Ex5_3.sce b/1040/CH5/EX5.3/Ex5_3.sce new file mode 100644 index 000000000..8e94e72a7 --- /dev/null +++ b/1040/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,123 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436. +//Chapter-5 Ex5.3 Pg No. 209 +//Title:Overall heat transfer coefficients and radial average bed temperature for packed bed reactor +//============================================================================================================= +clear +clc + +// COMMON INPUT +k_s= 8*10^(-4);//(cal/sec cm°C) +M_air_avg=29.24;// Average Molecular weight of air +Cp_air_mol=7.91;// cal/mol°C; +Cp_air_g=Cp_air_mol/M_air_avg;//cal/g°C +dp=0.4;//Size of the catalyst pellet (cm) +D=3.8;//Diameter of tube (cm) +R_pellet=D/2;//Radius +f_EO=0.7;//Fraction of ethylene forming ethylene oxide +f_CO2_H2O=1-f_EO;//Fraction of ethylene forming CO2 and H2O +rho_p=2.5;//Density of catalyst particle (g/cm3) +V_ref=22400;//Reference volume(cm3) +T_ref=273;// Reference Temperature (K) +P_ref=1;//Reference Pressure (atm) +P=5;//System Pressure (atm) +T_C=230;//System Temperature (°C) +T=T_C+273;//System Temperature (K) +u_ft=[1.5 3];//Velocity (ft/s) +myu=0.026*(10^(-2));//Viscosity of air (Poise) +M_wt=[28 32 44 28];//Molecular weight +M_fraction=[0.04 0.07 0.06 0.83]; +Cp=[15.3 7.4 10.7 7.4];//(cal/mol°C) +k_g=9.27*10^(-5);//(cal/sec cm°C) +del_H_rxn=[-29.9 -317];//(kcal/mol) +E=18*1000;//Activation Energy (cal) +R=1.987;//Gas Constant (cal/K.mol) + +//CALCULATION (Ex5.3.a) +rho=M_air_avg*P*T_ref/(V_ref*P_ref*T); +u=30.533.*u_ft;//Velocity in (cm/s) +Re_p=(rho*dp/myu).*u; +Pr=Cp_air_g*myu/k_g; +ks_by_kg=k_s/k_g; +k0e_by_kg=3.5;//From figure 5.16 Pg. No. 203 +kr_by_kg=2.5;//From equation 5.68 and 5.69 Pg. No. 204 +for i=1:2 + ktd_by_k_air(i)=(0.1*Pr)*Re_p(i); +ke_by_kg(i)=(k0e_by_kg+kr_by_kg)+ktd_by_k_air(i); +k_e(i)=ke_by_kg(i)*k_g; +h_bed(i)=4*k_e(i)/R_pellet; +Nu_w(i)=(1.94*Pr^(0.33))*Re_p(i)^(0.5);//Refer equation 5.83 Pg. No. 208 +h_w(i)=(k_g/dp)*Nu_w(i);//(cal/sec cm2 K) +h_j=100*10^(-3);//Assumed + U(i)=1/((1/h_j)+(1/h_w(i))+(1/h_bed(i))); +end + +//CALCULATION (Ex5.3.b) +minus_delH=f_EO*(-del_H_rxn(1))+f_CO2_H2O*(-del_H_rxn(2)); +T_max=T+20; +del_Tc= R*(T_max)^2/E; +T_new=250 +273; +X_E=0.1; +k250_by_k230=exp((E/R)*((1/T)-(1/T_new))); +P_E=P*(1-X_E)*M_fraction(1); +P_O2=P*(1-f_EO*X_E)*M_fraction(2); +P_CO2=P*(1+f_CO2_H2O*X_E)*M_fraction(3); +r=k250_by_k230*((0.076*P_E*P_O2)/(1+2*P_E+15*P_CO2)); +Q_dash=r*minus_delH*10^3/3600; +epsilon=0.4; +rho_bed=rho_p*(1-0.4); +A_percm3=4/D; +Q=(Q_dash*rho_bed) +for i=1:2 + delta_T(i)=(Q/A_percm3)*(1/U(i)); +end + +//OUTPUT ((Ex5.3.a)) +mprintf('\n OUTPUT Ex5.3.a'); +mprintf('\n==========================================================') +mprintf('\nThe Overall Heat transfer coefficient for given Velocities' ) +mprintf('\n==========================================================') +mprintf('\n u(velocity) U') +mprintf('\n (ft/s) (cal/cm2 sec K)') +mprintf('\n==========================================================') +for i=1:2 + mprintf('\n %0.1f %3E',u_ft(i),U(i)) +end + +//OUTPUT ((Ex5.3.b) +mprintf('\n\n\n OUTPUT Ex5.3.b'); +mprintf('\n==========================================================') +mprintf('\nThe Peak Radial average bed temperature for given Velocities' ) +mprintf('\n==========================================================') +mprintf('\n u(velocity) delta_T') +mprintf('\n (ft/s) (°C)') +mprintf('\n==========================================================') +for i=1:2 + mprintf('\n %0.1f \t \t %0.0f',u_ft(i),delta_T(i)) +end + +//FILE OUTPUT +fid= mopen('.\Chapter5-Ex3-Output.txt','w'); +mfprintf(fid,'\n OUTPUT Ex5.3.a'); +mfprintf(fid,'\n==========================================================') +mfprintf(fid,'\nThe Overall Heat transfer coefficient for given Velocities' ) +mfprintf(fid,'\n==========================================================') +mfprintf(fid,'\n u(velocity) U') +mfprintf(fid,'\n (ft/s) (cal/cm2 sec K)') +mfprintf(fid,'\n==========================================================') +for i=1:2 + mfprintf(fid,'\n %0.1f %3E',u_ft(i),U(i)) +end +mfprintf(fid,'\n\n\n OUTPUT Ex5.3.b'); +mfprintf(fid,'\n==========================================================') +mfprintf(fid,'\nThe Peak Radial average bed temperature for given Velocities' ) +mfprintf(fid,'\n==========================================================') +mfprintf(fid,'\n u(velocity) delta_T') +mfprintf(fid,'\n (ft/s) (°C)') +mfprintf(fid,'\n==========================================================') +for i=1:2 + mfprintf(fid,'\n %0.1f \t \t %0.0f',u_ft(i),delta_T(i)) +end +mclose(fid); +//===============================================END OF PROGRAM======================================================= + + -- cgit