summaryrefslogtreecommitdiff
path: root/1040/CH4/EX4.5/Chapter4_Ex5.sce
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /1040/CH4/EX4.5/Chapter4_Ex5.sce
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '1040/CH4/EX4.5/Chapter4_Ex5.sce')
-rw-r--r--1040/CH4/EX4.5/Chapter4_Ex5.sce64
1 files changed, 64 insertions, 0 deletions
diff --git a/1040/CH4/EX4.5/Chapter4_Ex5.sce b/1040/CH4/EX4.5/Chapter4_Ex5.sce
new file mode 100644
index 000000000..9595a726c
--- /dev/null
+++ b/1040/CH4/EX4.5/Chapter4_Ex5.sce
@@ -0,0 +1,64 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-4 Ex4.5 Pg No. 164
+//Title:The optimum pore size distribution for a spherical pellet
+//=============================================================================================================
+clear
+clc
+//INPUT
+d_pellet=5*10^-1;//Catalyst pellet size (cm)
+k_cat =3.6;// True Rate Constant (sec-1)
+V_g_cat=0.60 ;// Pore Volume of the catalyst(cm3/g)
+S_g_cat=300*10^4;//Surface area of catalyst (cm2/g)
+dp=0.02;// Size of powdered catalyst(cm)
+rho_p=0.8 ;// Density of catalyst particle(g/cm3)
+r_bar_narrow= 40*10^(-10)//narrow distribution
+D_KA=0.012 ;//(cm2/sec)
+D_AB= 0.40 ;//(cm2/sec)
+r_macro=2000*10^(-10);//For Macropores
+V_cat=1/rho_p;//Total catalyst volume (cm3/g)
+eta=1;//For powdered catalyst
+
+//CALCULATION
+epsilon=V_g_cat/V_cat;
+r_bar=2*V_g_cat/S_g_cat;
+R=dp/2;
+R_pellet=d_pellet/2;
+D_pore_a=1/((1/D_KA)+(1/D_AB));
+tau=3;//Assumed value
+D_e_cat=D_pore_a*epsilon/tau;
+Phi_app=R*sqrt(k_cat/D_e_cat);//Refer equation 4.55 Pg. No. 153
+D_KB=D_KA*(r_macro/r_bar_narrow);
+D_pore_b=1/((1/D_KB)+(1/D_AB));
+V_a_end=0.35;
+del_V_a=-0.05;
+V_a=V_g_cat:del_V_a:V_a_end;
+ for i=1:6
+ V_b(i)=V_g_cat-V_a(i);//Refer Equation 4.81 Pg. No. 164
+ S_a(i)=2*(V_a(i)/r_bar_narrow)*(10^-6);
+ S_b(i)=2*(V_b(i)/r_macro)*(10^-6);
+ S_g(i)=S_a(i)+S_b(i);
+ k(i)=k_cat*S_g(i)/(S_g_cat*10^-4);
+ D_e(i)=((D_pore_a*V_a(i)+D_pore_b*V_b(i))/V_g_cat)*(epsilon/tau);
+ phi(i)=R_pellet*sqrt(k(i)/D_e(i));
+ eta(i)=(3/phi(i))*((1/tanh(phi(i)))-(1/phi(i)));
+ eta_k(i)=eta(i)*k(i)
+ end
+ //OUTPUT
+ mprintf('\n===================================================================================================================')
+ mprintf('\nV_a \t V_b \t\t S_a \t S_b \t S_g \t k \t D_e \t phi\teta\teta_k');
+ mprintf('\nVolume \t cm3/g \t\t Surface Area \t m2/g \t\t s-1 \t cm2/s \t (-)\t(-) \t (-)');
+ mprintf('\n===================================================================================================================')
+ for i=1:6
+ mprintf('\n %.2f \t %0.2f \t\t %.0f \t %.1f \t %0.1f \t\t %0.2f \t%0.2e\t%0.2f \t %0.2f \t %0.2f',V_a(i),V_b(i),S_a(i),S_b(i),S_g(i),k(i),D_e(i),phi(i),eta(i),eta_k(i));
+ end
+
+//FILE OUTPUT
+fid= mopen('.\Chapter4-Ex5-Output.txt','w');
+ mfprintf(fid,'\n===================================================================================================================')
+ mfprintf(fid,'\nV_a \t V_b \t\t S_a \t S_b \t S_g \t k \t D_e \t phi\teta\teta_k');
+ mfprintf(fid,'\nVolume \t cm3/g \t\t Surface Area \t m2/g \t\t s-1 \t cm2/s \t (-)\t(-) \t (-)');
+ mfprintf(fid,'\n===================================================================================================================')
+ for i=1:6
+ mfprintf(fid,'\n %.2f \t %0.2f \t\t %.0f \t %.1f \t %0.1f \t\t %0.2f \t%0.2e\t%0.2f \t %0.2f \t %0.2f',V_a(i),V_b(i),S_a(i),S_b(i),S_g(i),k(i),D_e(i),phi(i),eta(i),eta_k(i));
+ end
+//==============================================================END OF PROGRAM===================================================