summaryrefslogtreecommitdiff
path: root/1040/CH4/EX4.2
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /1040/CH4/EX4.2
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '1040/CH4/EX4.2')
-rw-r--r--1040/CH4/EX4.2/Chapter4_Ex2.sce61
1 files changed, 61 insertions, 0 deletions
diff --git a/1040/CH4/EX4.2/Chapter4_Ex2.sce b/1040/CH4/EX4.2/Chapter4_Ex2.sce
new file mode 100644
index 000000000..32279c58e
--- /dev/null
+++ b/1040/CH4/EX4.2/Chapter4_Ex2.sce
@@ -0,0 +1,61 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-4 Ex4.2 Pg No. 140
+//Title:Effective diffusivity of O2 in air
+//============================================================================================================
+clear
+clc
+// COMMON INPUT
+S_g=150;//Total surface per gram (m2/g)
+V_g=0.45;//Pore volume per gram (cm3/g)
+V_i=0.30;//Micropore volume per gram (cm3/g)
+V_a=0.15;// Macropore volume per gram (cm3/g)
+rho_P=1.2;//Density of particle (g/cm3)
+tau=2.5;// Tortusity
+r_bar_i=40*(10^(-8));//Micropore radius
+r_bar_a=2000*(10^(-8));//Macropore radius
+D_AB=0.49;//For N2–O2 at 1 atm (cm2/s)
+M_O2=32;//Molecular weight of O2
+T=493;//Opereating Temperature (K)
+
+
+
+//CALCULATION (Ex4.2.a)
+Epsilon=V_g*rho_P;
+D_K_i=9700*(r_bar_i)*sqrt(T/M_O2);//Knudsen flow for micropore
+D_Pore_i=1/((1/D_K_i)+(1/D_AB))
+D_K_a=9700*(r_bar_a)*sqrt(T/M_O2);
+D_Pore_a=1/((1/D_K_a)+(1/D_AB));////Knudsen flow for macropore
+D_Pore_Avg=(V_i*D_Pore_i+V_a*D_Pore_a)/(V_i+V_a);
+D_e=Epsilon*D_Pore_Avg/tau;
+
+//CALCULATION (Ex4.2.b)
+Epsilon=V_g*rho_P;
+r_bar=2*V_g/(S_g*10^4);
+D_K=9700*(r_bar)*sqrt(T/M_O2);//Knudsen Flow
+D_Pore=1/((1/D_K)+(1/D_AB));
+tau=D_Pore*Epsilon/D_e;
+
+//OUTPUT
+mprintf('\n OUTPUT Ex4.2.a');
+mprintf('\n=================================================');
+mprintf('\n The effective diffusivity of O2 in air = %0.2e cm2/s',D_e);
+mprintf('\n\n OUTPUT Ex4.2.b');
+mprintf('\n=================================================');
+mprintf('\n The calculated surface mean pore radius = %.0e cm',r_bar);
+mprintf('\n The predicted pore diffusivity = %0.2e cm2/sec',D_Pore);
+mprintf('\n The corresponding tortusity = %0.2f',tau);
+
+//FILE OUTPUT
+fid= mopen('.\Chapter4-Ex2-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex4.2.a');
+mfprintf(fid,'\n=================================================');
+mfprintf(fid,'\n The effective diffusivity of O2 in air = %0.2e cm2/s',D_e);
+mfprintf(fid,'\n\n OUTPUT Ex4.2.b');
+mfprintf(fid,'\n=================================================');
+mfprintf(fid,'\n The calculated surface mean pore radius = %.0e cm',r_bar);
+mfprintf(fid,'\n The predicted pore diffusivity = %0.2e cm2/sec',D_Pore);
+mfprintf(fid,'\n The corresponding tortusity = %0.2f',tau);
+mclose(fid);
+
+
+//======================================================END OF PROGRAM========================================