1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
{
"metadata": {
"name": "",
"signature": "sha256:1e02050388cdd15ca19e058c38c307c0fd0b145ef71769674c045940ea70b08b"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"7: Atomic physics"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 7.1, Page number 113"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"mewB=9.27*10**-24;\n",
"B=3; #magnetic field(T)\n",
"e=1.6*10**-19; #conversion factor from J to eV\n",
"\n",
"#Calculation\n",
"E=2*mewB*B/e; #energy difference(eV)\n",
"\n",
"#Result\n",
"print \"energy difference is\",round(E*10**4,2),\"*10**-4 eV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"energy difference is 3.48 *10**-4 eV\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 7.3, Page number 118"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"l=2;\n",
"s=1/2;\n",
"j1=2+(1/2);\n",
"j2=2-(1/2);\n",
"\n",
"#Calculation\n",
"L=math.sqrt(l*(l+1)); #value of L(hbar)\n",
"S=math.sqrt(s*(s+1)); #value of S(hbar)\n",
"J1=math.sqrt(j1*(j1+1)); #value of J for D5/2 state(hbar)\n",
"J2=math.sqrt(j2*(j2+1)); #value of J for D3/2 state(hbar)\n",
"costheta1=((j1*(j1+1))-(l*(l+1))-(s*(s+1)))/(2*L*S);\n",
"theta1=math.acos(costheta1); #angle between L and S for D5/2(radian)\n",
"theta1=theta1*180/math.pi; #angle between L and S for D5/2(degrees)\n",
"costheta2=((j2*(j2+1))-(l*(l+1))-(s*(s+1)))/(2*L*S);\n",
"theta2=math.acos(costheta2); #angle between L and S for D3/2(radian)\n",
"theta2=theta2*180/math.pi; #angle between L and S for D3/2(degrees)\n",
"\n",
"#Result\n",
"print \"value of L is\",round(L,3),\"hbar\"\n",
"print \"value of S is\",round(S,3),\"hbar\"\n",
"print \"value of J for D5/2 state is\",round(J1,3),\"hbar\"\n",
"print \"value of J for D3/2 state is\",round(J2,3),\"hbar\"\n",
"print \"angle between L and S for D5/2 is\",round(theta1,2),\"degrees\"\n",
"print \"angle between L and S for D3/2 is\",int(theta2),\"degrees\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"value of L is 2.449 hbar\n",
"value of S is 0.866 hbar\n",
"value of J for D5/2 state is 2.958 hbar\n",
"value of J for D3/2 state is 1.936 hbar\n",
"angle between L and S for D5/2 is 61.87 degrees\n",
"angle between L and S for D3/2 is 135 degrees\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 7.10, Page number 136"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"S=1;\n",
"L=1; \n",
"J=1;\n",
"\n",
"#Calculation\n",
"a=L*(L+1)-(L*(L+1));\n",
"g1=1+(a/(2*L*(L+1))); #lande's g-factor for pure orbital angular momentum\n",
"b=(S*(S+1)+(S*(S+1)))/(2*S*(S+1)); #lande's g-factor for pure spin angular momentum\n",
"g2=1+b; #lande's g-factor for pure spin angular momentum\n",
"c=J*(J+1)+(S*(S+1))-(L*(L+1));\n",
"g3=1+(c/(2*J*(J+1))); #lande's g-factor for state 3P1\n",
"\n",
"#Result\n",
"print \"lande's g-factor for pure orbital angular momentum is\",g1\n",
"print \"ande's g-factor for pure spin angular momentum is\",g2\n",
"print \"lande's g-factor for state 3P1 is\",g3"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"lande's g-factor for pure orbital angular momentum is 1.0\n",
"ande's g-factor for pure spin angular momentum is 2.0\n",
"lande's g-factor for state 3P1 is 1.5\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 7.12, Page number 141"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"EKalpha=21.99; #energy in silver(keV)\n",
"EKbita=25.145; #energy in silver(keV)\n",
"E=-25.514; #energy of n=1 state(keV)\n",
" \n",
"#Calculation\n",
"ELalpha=EKbita-EKalpha; #energy of L alpha X ray(keV)\n",
"E2=-E-EKalpha; #binding energy of L electron(keV)\n",
"\n",
"#Result\n",
"print \"energy of L alpha X ray is\",ELalpha,\"keV\"\n",
"print \"binding energy of L electron is\",E2,\"keV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"energy of L alpha X ray is 3.155 keV\n",
"binding energy of L electron is 3.524 keV\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 7.13, Page number 141"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"h=6.626*10**-34; #planck's constant(Js)\n",
"c=3*10**8; #velocity of light(m/sec)\n",
"Z=11; #atomic number\n",
"R=1.097*10**7; #value of R(per m)\n",
"\n",
"#Calculation\n",
"E=(3*h*c*R*(Z-1)**2)/4; #energy of k aplha X-ray(keV)\n",
"\n",
"#Result\n",
"print \"energy of k aplha X-ray is\",round(E*10**16,2),\"*10**-16 keV\"\n",
"print \"answer given in the book is wrong\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"energy of k aplha X-ray is 1.64 *10**-16 keV\n",
"answer given in the book is wrong\n"
]
}
],
"prompt_number": 12
}
],
"metadata": {}
}
]
}
|