summaryrefslogtreecommitdiff
path: root/backup/Modern_Physics_By_G.Aruldas_version_backup/Chapter7_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'backup/Modern_Physics_By_G.Aruldas_version_backup/Chapter7_1.ipynb')
-rwxr-xr-xbackup/Modern_Physics_By_G.Aruldas_version_backup/Chapter7_1.ipynb258
1 files changed, 258 insertions, 0 deletions
diff --git a/backup/Modern_Physics_By_G.Aruldas_version_backup/Chapter7_1.ipynb b/backup/Modern_Physics_By_G.Aruldas_version_backup/Chapter7_1.ipynb
new file mode 100755
index 00000000..45ed5766
--- /dev/null
+++ b/backup/Modern_Physics_By_G.Aruldas_version_backup/Chapter7_1.ipynb
@@ -0,0 +1,258 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1e02050388cdd15ca19e058c38c307c0fd0b145ef71769674c045940ea70b08b"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "7: Atomic physics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.1, Page number 113"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "mewB=9.27*10**-24;\n",
+ "B=3; #magnetic field(T)\n",
+ "e=1.6*10**-19; #conversion factor from J to eV\n",
+ "\n",
+ "#Calculation\n",
+ "E=2*mewB*B/e; #energy difference(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy difference is\",round(E*10**4,2),\"*10**-4 eV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "energy difference is 3.48 *10**-4 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.3, Page number 118"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "l=2;\n",
+ "s=1/2;\n",
+ "j1=2+(1/2);\n",
+ "j2=2-(1/2);\n",
+ "\n",
+ "#Calculation\n",
+ "L=math.sqrt(l*(l+1)); #value of L(hbar)\n",
+ "S=math.sqrt(s*(s+1)); #value of S(hbar)\n",
+ "J1=math.sqrt(j1*(j1+1)); #value of J for D5/2 state(hbar)\n",
+ "J2=math.sqrt(j2*(j2+1)); #value of J for D3/2 state(hbar)\n",
+ "costheta1=((j1*(j1+1))-(l*(l+1))-(s*(s+1)))/(2*L*S);\n",
+ "theta1=math.acos(costheta1); #angle between L and S for D5/2(radian)\n",
+ "theta1=theta1*180/math.pi; #angle between L and S for D5/2(degrees)\n",
+ "costheta2=((j2*(j2+1))-(l*(l+1))-(s*(s+1)))/(2*L*S);\n",
+ "theta2=math.acos(costheta2); #angle between L and S for D3/2(radian)\n",
+ "theta2=theta2*180/math.pi; #angle between L and S for D3/2(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"value of L is\",round(L,3),\"hbar\"\n",
+ "print \"value of S is\",round(S,3),\"hbar\"\n",
+ "print \"value of J for D5/2 state is\",round(J1,3),\"hbar\"\n",
+ "print \"value of J for D3/2 state is\",round(J2,3),\"hbar\"\n",
+ "print \"angle between L and S for D5/2 is\",round(theta1,2),\"degrees\"\n",
+ "print \"angle between L and S for D3/2 is\",int(theta2),\"degrees\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "value of L is 2.449 hbar\n",
+ "value of S is 0.866 hbar\n",
+ "value of J for D5/2 state is 2.958 hbar\n",
+ "value of J for D3/2 state is 1.936 hbar\n",
+ "angle between L and S for D5/2 is 61.87 degrees\n",
+ "angle between L and S for D3/2 is 135 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.10, Page number 136"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "S=1;\n",
+ "L=1; \n",
+ "J=1;\n",
+ "\n",
+ "#Calculation\n",
+ "a=L*(L+1)-(L*(L+1));\n",
+ "g1=1+(a/(2*L*(L+1))); #lande's g-factor for pure orbital angular momentum\n",
+ "b=(S*(S+1)+(S*(S+1)))/(2*S*(S+1)); #lande's g-factor for pure spin angular momentum\n",
+ "g2=1+b; #lande's g-factor for pure spin angular momentum\n",
+ "c=J*(J+1)+(S*(S+1))-(L*(L+1));\n",
+ "g3=1+(c/(2*J*(J+1))); #lande's g-factor for state 3P1\n",
+ "\n",
+ "#Result\n",
+ "print \"lande's g-factor for pure orbital angular momentum is\",g1\n",
+ "print \"ande's g-factor for pure spin angular momentum is\",g2\n",
+ "print \"lande's g-factor for state 3P1 is\",g3"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "lande's g-factor for pure orbital angular momentum is 1.0\n",
+ "ande's g-factor for pure spin angular momentum is 2.0\n",
+ "lande's g-factor for state 3P1 is 1.5\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.12, Page number 141"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "EKalpha=21.99; #energy in silver(keV)\n",
+ "EKbita=25.145; #energy in silver(keV)\n",
+ "E=-25.514; #energy of n=1 state(keV)\n",
+ " \n",
+ "#Calculation\n",
+ "ELalpha=EKbita-EKalpha; #energy of L alpha X ray(keV)\n",
+ "E2=-E-EKalpha; #binding energy of L electron(keV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of L alpha X ray is\",ELalpha,\"keV\"\n",
+ "print \"binding energy of L electron is\",E2,\"keV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "energy of L alpha X ray is 3.155 keV\n",
+ "binding energy of L electron is 3.524 keV\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 7.13, Page number 141"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #planck's constant(Js)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "Z=11; #atomic number\n",
+ "R=1.097*10**7; #value of R(per m)\n",
+ "\n",
+ "#Calculation\n",
+ "E=(3*h*c*R*(Z-1)**2)/4; #energy of k aplha X-ray(keV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy of k aplha X-ray is\",round(E*10**16,2),\"*10**-16 keV\"\n",
+ "print \"answer given in the book is wrong\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "energy of k aplha X-ray is 1.64 *10**-16 keV\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file