summaryrefslogtreecommitdiff
path: root/backup/A_Textbook_Of_Engineering_Physics_version_backup/Chapter5.ipynb
blob: f25c1843fc85ca972f9f0d052e87daaf5bbf19af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
{
 "metadata": {
  "name": "",
  "signature": "sha256:b45bed0bf651f557c40cec41e1736def1e279410a176004acdb12e68c84f8fd8"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Chapter5Electron Oprtics"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex1-pg 72"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "##Example 5.1\n",
      "##Electron refraction, calculation of potential difference\n",
      "\n",
      "##given values\n",
      "V1=250.;##potential by which electrons are accelerated in Volts\n",
      "alpha1=50*math.pi/180.;##in degree\n",
      "alpha2=30*math.pi/180.;##in degree\n",
      "b=math.sin(alpha1)/math.sin(alpha2);\n",
      "##calculation\n",
      "V2=(b**2.)*V1;\n",
      "a=V2-V1;\n",
      "print'%s %.1f %s'%('potential difference(in volts) is:',a,'');\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "potential difference(in volts) is: 336.8 \n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2 $3-pg94"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "##Example 5.2&5.3\n",
      "import math\n",
      "##Cyclotron, calculation of magnetic induction,maximum energy\n",
      "##given values\n",
      "f=12*(10**6);##oscillator frequency in Hertz\n",
      "r=.53;##radius of the dee in metre\n",
      "q=1.6*10**-19;##Deuteron charge in C\n",
      "m=3.34*10**-27;##mass of deuteron in kg\n",
      "##calculation\n",
      "B=2*math.pi*f*m/q;##\n",
      "print'%s %.1f %s'%('magnetic induction (in Tesla) is:',B,'');\n",
      "E=B**2*q**2.*r**2./(2.*m);\n",
      "print'%s %.3e %s'%('maximum energy to which deuterons can be accelerated (in J) is',E,'')\n",
      "E1=E*6.24*10**18/10**6;##conversion of energy into MeV\n",
      "print'%s %.1f %s'%('maximum energy to which deuterons can be accelerated (in MeV) is',E1,'');\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "magnetic induction (in Tesla) is: 1.6 \n",
        "maximum energy to which deuterons can be accelerated (in J) is 2.667e-12 \n",
        "maximum energy to which deuterons can be accelerated (in MeV) is 16.6 \n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex4-pg99"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "##Example 5.4\n",
      "##Mass spectrograph, calculation of linear separation of lines formed on photographic plates\n",
      "\n",
      "##given values;\n",
      "E=8.*10**4;##electric field in V/m\n",
      "B=.55##magnetic induction in Wb/m*2\n",
      "q=1.6*10**-19;##charge of ions\n",
      "m1=20.*1.67*10**-27;##atomic mass of an isotope of neon\n",
      "m2=22.*1.67*10**-27;##atomic mass of other isotope of neon\n",
      "##calculation\n",
      "x=2*E*(m2-m1)/(q*B**2);##\n",
      "print'%s %.3f %s'%('separation of lines (in metre) is:',x,'')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "separation of lines (in metre) is: 0.011 \n"
       ]
      }
     ],
     "prompt_number": 3
    }
   ],
   "metadata": {}
  }
 ]
}