{ "metadata": { "name": "", "signature": "sha256:b45bed0bf651f557c40cec41e1736def1e279410a176004acdb12e68c84f8fd8" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Chapter5Electron Oprtics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg 72" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 5.1\n", "##Electron refraction, calculation of potential difference\n", "\n", "##given values\n", "V1=250.;##potential by which electrons are accelerated in Volts\n", "alpha1=50*math.pi/180.;##in degree\n", "alpha2=30*math.pi/180.;##in degree\n", "b=math.sin(alpha1)/math.sin(alpha2);\n", "##calculation\n", "V2=(b**2.)*V1;\n", "a=V2-V1;\n", "print'%s %.1f %s'%('potential difference(in volts) is:',a,'');\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "potential difference(in volts) is: 336.8 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2 $3-pg94" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "##Example 5.2&5.3\n", "import math\n", "##Cyclotron, calculation of magnetic induction,maximum energy\n", "##given values\n", "f=12*(10**6);##oscillator frequency in Hertz\n", "r=.53;##radius of the dee in metre\n", "q=1.6*10**-19;##Deuteron charge in C\n", "m=3.34*10**-27;##mass of deuteron in kg\n", "##calculation\n", "B=2*math.pi*f*m/q;##\n", "print'%s %.1f %s'%('magnetic induction (in Tesla) is:',B,'');\n", "E=B**2*q**2.*r**2./(2.*m);\n", "print'%s %.3e %s'%('maximum energy to which deuterons can be accelerated (in J) is',E,'')\n", "E1=E*6.24*10**18/10**6;##conversion of energy into MeV\n", "print'%s %.1f %s'%('maximum energy to which deuterons can be accelerated (in MeV) is',E1,'');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "magnetic induction (in Tesla) is: 1.6 \n", "maximum energy to which deuterons can be accelerated (in J) is 2.667e-12 \n", "maximum energy to which deuterons can be accelerated (in MeV) is 16.6 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg99" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Example 5.4\n", "##Mass spectrograph, calculation of linear separation of lines formed on photographic plates\n", "\n", "##given values;\n", "E=8.*10**4;##electric field in V/m\n", "B=.55##magnetic induction in Wb/m*2\n", "q=1.6*10**-19;##charge of ions\n", "m1=20.*1.67*10**-27;##atomic mass of an isotope of neon\n", "m2=22.*1.67*10**-27;##atomic mass of other isotope of neon\n", "##calculation\n", "x=2*E*(m2-m1)/(q*B**2);##\n", "print'%s %.3f %s'%('separation of lines (in metre) is:',x,'')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "separation of lines (in metre) is: 0.011 \n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }