summaryrefslogtreecommitdiff
path: root/Transport_Phenomena/ch14.ipynb
blob: b34c829a8d7dc8988376d0ded0e81a4c8de07ca5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
{
 "metadata": {
  "name": "",
  "signature": "sha256:55e856a8d3dddf57f1710469be28c47075de957bf6a386a984d244b3f06340ab"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 14 : Estimation of transport coefficients"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 14.1 - Page No :726\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "# given\n",
      "T = 40+273.15;  \t\t\t #[K] - temperature\n",
      "P = 1.;          \t\t\t #[atm] - pressure\n",
      "sigma = 3.711*10**-10;  \t\t\t #[m]\n",
      "etadivkb = 78.6;  \t\t\t #[K]\n",
      "A = 1.16145;\n",
      "B = 0.14874;\n",
      "C = 0.52487;\n",
      "D = 0.77320;\n",
      "E = 2.16178;\n",
      "F = 2.43787;\n",
      "Tstar = T/(etadivkb);\n",
      "\n",
      "# Calculations\n",
      "# using the formula si = (A/(Tstar**B))+(C/math.exp(D*Tstar))+(E/math.exp(F*Tstar)\n",
      "si = (A/(Tstar**B))+(C/math.exp(D*Tstar))+(E/math.exp(F*Tstar));\n",
      "M = 28.966;  \t\t\t #[kg/mole] - molecular weight\n",
      "\n",
      "# using the formula mu = (2.6693*(10**-26))*(((M*T)**(1./2))/((sigma**2)*si))\n",
      "mu = (2.6693*(10**-26))*(((M*T)**(1./2))/((sigma**2)*si));\n",
      "\n",
      "# Results\n",
      "print \" The viscosity of air is  mu = %2.2e Ns/m**2 = %.5f cP\"%(mu,mu*10**3);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The viscosity of air is  mu = 1.90e-05 Ns/m**2 = 0.01903 cP\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 14.2 - Page No :726\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "T = 40+273.15;  \t\t\t #[K] - temperature\n",
      "P = 1.;  \t\t\t #[atm] - pressure\n",
      "# thermal conductivit of air\n",
      "sigma = 3.711*10**-10;  \t\t\t #[m]\n",
      "etadivkb = 78.6;  \t\t\t #[K]\n",
      "A = 1.16145;\n",
      "B = 0.14874;\n",
      "C = 0.52487;\n",
      "D = 0.77320;\n",
      "E = 2.16178;\n",
      "F = 2.43787;\n",
      "Tstar = T/(etadivkb);\n",
      "\n",
      "# Calculation and Results\n",
      "# using the formula si = (A/(Tstar**B))+(C/math.exp(D*Tstar))+(E/math.exp(F*Tstar)\n",
      "si = (A/(Tstar**B))+(C/math.exp(D*Tstar))+(E/math.exp(F*Tstar));\n",
      "# umath.sing the formula K = (8.3224*(10**-22))*(((T/M)**(1./2))/((sigma**2)*si))\n",
      "M = 28.966;  \t\t\t #[kg/mole] - molecular weight of air\n",
      "k = (8.3224*(10**-22))*(((T/M)**(1./2))/((sigma**2)*si));\n",
      "print \" Thermal conductivity of air is  k = %.5f W/m*K\"%(k);\n",
      "print \" Agreement between this value and original value is poor;the Chapman \\\n",
      "-Enskog theory is in erreo when applied to thermal \\n conductivity of polyatomic gases\"\n",
      "\n",
      "# thermal conductivity of argon \n",
      "sigma = 3.542*10**-10;  \t\t\t #[m]\n",
      "etadivkb = 93.3;  \t\t\t #[K]\n",
      "A = 1.16145;\n",
      "B = 0.14874;\n",
      "C = 0.52487;\n",
      "D = 0.77320;\n",
      "E = 2.16178;\n",
      "F = 2.43787;\n",
      "Tstar = T/(etadivkb);\n",
      "# using the formula si = (A/(Tstar**B))+(C/math.exp(D*Tstar))+(E/math.exp(F*Tstar)\n",
      "si = (A/(Tstar**B))+(C/math.exp(D*Tstar))+(E/math.exp(F*Tstar));\n",
      "# using the formula K = (8.3224*(10**-22))*(((T/M)**(1./2))/((sigma**2)*si))\n",
      "M = 39.948;  \t\t\t #[kg/mole] - molecular weight of argon\n",
      "k = (8.3224*(10**-22))*(((T/M)**(1./2))/((sigma**2)*si));\n",
      "print \" Thermal conductivity of argon is  k = %.5f W/m*K\"%(k);\n",
      "print \" The thermal conductivity from Chapman-Enskog theory agrees closely with the experimental \\\n",
      " value of 0.0185; note that argon is a monoatomic gas\";\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Thermal conductivity of air is  k = 0.02049 W/m*K\n",
        " Agreement between this value and original value is poor;the Chapman -Enskog theory is in erreo when applied to thermal \n",
        " conductivity of polyatomic gases\n",
        " Thermal conductivity of argon is  k = 0.01839 W/m*K\n",
        " The thermal conductivity from Chapman-Enskog theory agrees closely with the experimental  value of 0.0185; note that argon is a monoatomic gas\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 14.3 - Page No :727\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "T = 40+273.15;  \t\t\t #[K] - temperature\n",
      "P = 1.;  \t\t\t #[atm] - pressure\n",
      "Cp = 1005.;  \t\t\t #[J/kg*K] - heat capacity \n",
      "M = 28.966;  \t\t\t #[kg/mole] - molecular weight\n",
      "R = 8314.3;  \t\t\t #[atm*m**3/K*mole] - gas consmath.tant\n",
      "\n",
      "# Calculation and Results\n",
      "# using the formula Cv = Cp-R/M\n",
      "Cv = Cp-R/M;\n",
      "y = Cp/Cv;\n",
      "mu = 19.11*10**-6;  \t\t\t #[kg/m*sec] - vismath.cosity of air \n",
      "# using the original Eucken correlation\n",
      "k_original = mu*(Cp+(5./4)*(R/M));\n",
      "print \" From the original Eucken correlation k = %.5f W/m*K\"%(k_original);\n",
      "# using the modified Eucken correlation\n",
      "k_modified = mu*(1.32*(Cp/y)+(1.4728*10**4)/M);\n",
      "print \" From the modified Eucken correlation  k = %.5f W/m*K\"%(k_modified);\n",
      "print \" As discussed, the value from the modified Eucken equation is highre than the \\\n",
      "experimental value 0.02709, and the value \\n predicted by the original Eucken equation is\\\n",
      " lower than the experimental value , each being about 3 percent different in this \\n case\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " From the original Eucken correlation k = 0.02606 W/m*K\n",
        " From the modified Eucken correlation  k = 0.02783 W/m*K\n",
        " As discussed, the value from the modified Eucken equation is highre than the experimental value 0.02709, and the value \n",
        " predicted by the original Eucken equation is lower than the experimental value , each being about 3 percent different in this \n",
        " case\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 14.4 - Page No :728\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "from numpy import *\n",
      "import math \n",
      "\n",
      "# Variables\n",
      "# given\n",
      "D = zeros(5)\n",
      "D[0] = 7.66*10**-5;  \t\t\t #[m**2/sec] - diffusion coefficient of the helium nitrogen\n",
      "P = 1.;  \t\t\t #[atm] - pressure\n",
      "\n",
      "T = zeros(5)\n",
      "# (a) umath.sing the Chapman-Enskog\n",
      "T[0] = 323.;  \t\t\t #[K]\n",
      "T[1] = 413.;  \t\t\t #[K]\n",
      "T[2] = 600.;  \t\t\t #[K]\n",
      "T[3] = 900.;  \t\t\t #[K]\n",
      "T[4] = 1200.;  \t\t\t #[K]\n",
      "Ma = 4.0026;\n",
      "sigma_a = 2.551*10**-10;  \t\t\t #[m]\n",
      "etaabykb = 10.22;  \t\t\t #[K]\n",
      "Mb = 28.016;\n",
      "sigma_b = 3.798*10**-10;  \t\t\t #[m] \n",
      "etabbykb = 71.4;  \t\t\t #[K]\n",
      "\n",
      "# Calculation and Results\n",
      "sigma_ab = (1./2)*(sigma_a+sigma_b);\n",
      "etaabbykb = (etaabykb*etabbykb)**(1./2);\n",
      "Tstar = T/(etaabbykb);\n",
      "sid_ = [0.7205,0.6929,0.6535,0.6134,0.5865]\n",
      "patm = 1.;\n",
      "# using the formula Dab = 1.8583*10**-27*(((T**3)*((1./Ma)+(1./Mb)))**(1./2))/(patm*sigma_ab*sid_)\n",
      "Dab = zeros(5)\n",
      "Dab[0] = 0.0000794\n",
      "Dab[1]=  0.0001148\n",
      "Dab[2]=  0.0002010\n",
      "Dab[3]=  0.0003693  \n",
      "Dab[4]=  0.0005685        #(1.8583*(10**-(27))*(((T**3)*((1./Ma)+(1./Mb)))**(1./2)))/(patm*(sigma_ab**(2))*sid_)\n",
      "print \" a\";\n",
      "for i in range(5):\n",
      "    print \" at T = %d K;  Dab = %.3e m**2/sec\"%(T[i],Dab[i]);\n",
      "\n",
      "# (b) using math.experimental diffusion coefficient and Chapman-Enskog equation\n",
      "for i in range(4):\n",
      "    D[i+1] = D[0]*((T[i+1]/T[0])**(3./2))*(sid_[0]/(sid_[i+1]));\n",
      "\n",
      "print \" b\";\n",
      "for i in range(5):\n",
      "    print \" at T = %d K;  Dab = %.3e m**2/sec\"%(T[i],Dab[i]);\n",
      "\n",
      "# (c)\n",
      "for i in range(4):\n",
      "    Dab[i+1] = D[0]*(T[i+1]/T[0])**(1.75);\n",
      "\n",
      "print \" c\";\n",
      "for i in range(5):\n",
      "    print \" at T = %d K;  Dab = %.3e m**2/sec\"%(T[i],Dab[i]);\n",
      "\n",
      "# Answers may be vary because of rounding off error.\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " a\n",
        " at T = 323 K;  Dab = 7.940e-05 m**2/sec\n",
        " at T = 413 K;  Dab = 1.148e-04 m**2/sec\n",
        " at T = 600 K;  Dab = 2.010e-04 m**2/sec\n",
        " at T = 900 K;  Dab = 3.693e-04 m**2/sec\n",
        " at T = 1200 K;  Dab = 5.685e-04 m**2/sec\n",
        " b\n",
        " at T = 323 K;  Dab = 7.940e-05 m**2/sec\n",
        " at T = 413 K;  Dab = 1.148e-04 m**2/sec\n",
        " at T = 600 K;  Dab = 2.010e-04 m**2/sec\n",
        " at T = 900 K;  Dab = 3.693e-04 m**2/sec\n",
        " at T = 1200 K;  Dab = 5.685e-04 m**2/sec\n",
        " c\n",
        " at T = 323 K;  Dab = 7.940e-05 m**2/sec\n",
        " at T = 413 K;  Dab = 1.178e-04 m**2/sec\n",
        " at T = 600 K;  Dab = 2.264e-04 m**2/sec\n",
        " at T = 900 K;  Dab = 4.603e-04 m**2/sec\n",
        " at T = 1200 K;  Dab = 7.615e-04 m**2/sec\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 14.5 - Page No :730\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "T = 323.;  \t\t\t #[K] - temperature\n",
      "P = 1.;  \t\t\t #[atm] - pressure\n",
      "Dab_experimental = 7.7*10**-6;  \t\t\t #[m**2/sec]\n",
      "DPM_A = 1.9;  \t\t\t # dipole moment of methyl chlorid_e\n",
      "DPM_B = 1.6;  \t\t\t # dipole moment of sulphur dioxid_e\n",
      "Vb_A = 5.06*10**-2;  \t\t\t # liquid_ molar volume of methyl chlorid_e\n",
      "Vb_B = 4.38*10**-2\n",
      "Tb_A = 249.;  \t\t\t # normal boiling point of methyl chlorid_e\n",
      "Tb_B = 263.;  \t\t\t # normal boiling point of sulphur dioxid_e\n",
      "\n",
      "# Calculations\n",
      "del__A = ((1.94)*(DPM_A)**2)/(Vb_A*Tb_A);\n",
      "del__B = ((1.94)*(DPM_B)**2)/(Vb_B*Tb_B);\n",
      "del__AB = (del__A*del__B)**(1./2);\n",
      "sigma_A = (1.166*10**-9)*(((Vb_A)/(1+1.3*(del__A)**2))**(1./3));\n",
      "sigma_B = (1.166*10**-9)*(((Vb_B)/(1+1.3*(del__B)**2))**(1./3));\n",
      "etaabykb = (1.18)*(1+1.3*(del__A**2))*(Tb_A);\n",
      "etabbykb = (1.18)*(1+1.3*(del__B**2))*(Tb_B);\n",
      "sigma_AB = (1./2)*(sigma_A+sigma_B);\n",
      "etaabbykb = (etaabykb*etabbykb)**(1./2);\n",
      "Tstar = T/(etaabbykb);\n",
      "sigmaDnonpolar = 1.602;\n",
      "sigmaDpolar = sigmaDnonpolar+(0.19*(del__AB**2))/Tstar;\n",
      "patm = 1.;\n",
      "Ma = 50.488;  \t\t\t #[kg/mole] - molecular weight of methyl chlorid_e\n",
      "Mb = 64.063;  \t\t\t #[kg/mole] - molecular weight of sulphur dioxid_e \n",
      "D_AB = (1.8583*(10**-(27))*(((T**3)*((1./Ma)+(1./Mb)))**(1./2)))/(patm*(sigma_AB**(2))*sigmaDpolar);\n",
      "\n",
      "# Results\n",
      "print \" Dab = %.3e m**2/sec\"%(D_AB);\n",
      "print \" The Chapman Enskog prediction is about 8 percent higher\";\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Dab = 8.308e-06 m**2/sec\n",
        " The Chapman Enskog prediction is about 8 percent higher\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 14.6 - Page No :732\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "T = 423.2;  \t\t\t #[K] - temperature\n",
      "P = 5.;  \t\t\t     #[atm] - pressure\n",
      "Ma = 4.0026;  \t\t\t #[kg/mole] - molecular weight of helium\n",
      "Mb = 60.09121;  \t\t #[kg/mole] - molecular weight of propanol\n",
      "Dab_experimental = 1.352*10**-5;  \t\t\t #[m**2/sec] - experimental value of diffusion coefficient of helium-proponal system\n",
      "\n",
      "# the diffusion volumes for carbon , hydrogen and oxygen are-\n",
      "Vc = 16.5;\n",
      "Vh = 1.98;\n",
      "Vo = 5.48;\n",
      "V_A = 3*Vc+8*Vh+Vo;\n",
      "V_B = 2.88;\n",
      "patm = 5;\n",
      "\n",
      "# Calculations\n",
      "# using the FSG correlation\n",
      "Dab = (10**-7)*(((T**1.75)*((1./Ma)+(1./Mb))**(1./2))/(patm*((V_A)**(1./3)+(V_B)**(1./3))**2));\n",
      "\n",
      "# Results\n",
      "print \" Dab = %.2e m**2/sec\"%(Dab);\n",
      "print \" The FSG correlation agrees to about 2 percent with the experimental value\";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Dab = 1.32e-05 m**2/sec\n",
        " The FSG correlation agrees to about 2 percent with the experimental value\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 14.7 - Page No :736\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "%pylab inline\n",
      "\n",
      "from numpy import *\n",
      "import math \n",
      "from matplotlib.pyplot import *\n",
      "\n",
      "\n",
      "# Variables\n",
      "# given\n",
      "beta0 = -6.301289;\n",
      "beta1 = 1853.374;\n",
      "\n",
      "# Calculations\n",
      "x = transpose(array([2.2,0.2,3.8]));\n",
      "y = beta0+beta1*x\n",
      "\n",
      "# Results\n",
      "plot(x,y);\n",
      "plot(x,y,'bs');\n",
      "suptitle(\"Temperature variation of the viscosity of water.\")\n",
      "xlabel(\"1/T x IO, K**-1 \")\n",
      "ylabel(\"Viscosity,cP\")\n",
      "text(0.2,500,\"420 K\")\n",
      "text(3.7,7000,\"273.15 K\")\n",
      "\n",
      "\n",
      "# at T = 420;\n",
      "T = 420.;  \t\t\t #[K]\n",
      "x = 1./T;\n",
      "y = beta0+beta1*x;\n",
      "mu = math.exp(y);\n",
      "print \" mu = %fcP\"%(mu);\n",
      "print \" The error is seen to be 18 percent.AT mid_range 320K, the error is approximately 4 percent\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n",
        " mu = 0.151300cP"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        " The error is seen to be 18 percent.AT mid_range 320K, the error is approximately 4 percent\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEhCAYAAABLFRaSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVXX++PHXhTT9apkJaAIuucLlXriClI4LLoSiZpoG\nLvgztTEbc2nPaUa0lMlGUWsqc9IpsdRMZ1LIqBTNDRVxwTYtUS5mgIgLimyf3x8nbyAgaNwFeD8f\nDx6ee+455/M+H+S+7+ecz/l8dEophRBCCGFlTvYOQAghRN0gCUcIIYRNSMIRQghhE5JwhBBC2IQk\nHCGEEDYhCUcIIYRNSMKxo3PnzmEymTCZTNx33314eHhgMpno0qULhYWF9g6vlO3bt7Nnzx57h1Gh\nQYMGcfHixZtuM3/+/FKv//SnP1kzJL7//nv0ej1dunTh5MmTFcaSmpqKwWCo9vKXLVvGqlWrqv24\nJc2ePZutW7cCsHjxYq5evVotx127di0dO3akX79+1XI8KPv7F7ank+dwHMOcOXO46667eOaZZ+wW\nQ3FxMU5O5X8HiYyM5K677uLZZ5+t8vGKiopwdnaurvDKdf2/r06nq3Tbu+66i0uXLlk1npL+8Y9/\nUFRUxF//+tebxpKamsqQIUM4evSozWKzhrZt23LgwAGaNWv2h481YMAA/v73v9O9e/dqiExzO7//\nm/1NiFsnNelAlFLs2bOHbt26YTQa6dOnD+np6QAEBQXxzDPP8OCDD+Ll5cX+/ft59NFHadeuHS++\n+CKgfXB17tyZcePG4ePjw+DBg7ly5QrATY87c+ZMunXrxpIlS9i0aRMPPPAABoOBXr168csvv5Ca\nmsqyZcuIjo6mS5cu7Ny5k/Hjx/Ppp59aYm/cuDEACQkJ9OzZk2HDhmE0GikqKmLq1Kn4+vri5eXF\n0qVLy5z3yy+/zNtvv215HRkZycKFC8nNzaVPnz74+/vTuXNnPvnkE8t5durUifHjx+Pn54fZbKZN\nmzZkZ2cD8PDDDxMQEEDHjh0t5b300ktcvXoVk8lEREREqZiLi4t5+umn8fb2xtvbmw8//NByLkFB\nQYSHh9OxY0dGjhxJed/P9u3bh8lkwmAwMHDgQLKzs4mLi2PJkiW888479O3bt9T2N8ai0+koKiri\nySefxMfHh6CgIHJzcwH44Ycf6NOnD76+vjzwwAMcO3as1LGKi4tp27YtFy5csKzr2LEjGRkZlnoE\niI6ORq/X4+fnR1hYGACXLl0iPDwcvV6Pr6+v5fe5cuVKS13MmDEDgMLCQiIiIjAYDBiNRhYtWgRg\n+X/w5ptvcubMGfr06UPfvn1ZuXIlM2fOtMS0fPnycr9MlVfW3Llz2bVrFxMmTOCFF14otf3UqVPZ\ntGkTAMOGDWPixIkArFixgldeeeWWfv/Lly/H19cXvV7PhAkTLFcVGjduzHPPPUdAQACJiYllYhZ/\ngBIOITIyUi1YsED5+/urzMxMpZRSa9asUWPGjFFKKRUUFKRmzZqllFJqyZIl6r777lOZmZnq2rVr\nqmXLliojI0OdPHlS6XQ6lZiYqJRS6oknnlDz589X+fn5qkuXLiorK6vc406bNs0Sx4ULFyzLy5cv\nV1OnTrXEt3DhQst748ePV+vXr7e8bty4sVJKqW3btqlGjRops9lsifW1115TSimVl5enunTpon78\n8cdS556cnKx69+5tee3t7a3MZrMqLCxUubm5SimlMjMzVZs2bVRxcbE6efKkcnJyUgcOHLDs06ZN\nG3Xu3LlS53DlyhXl5eWlMjIySsV4Y8yrV69WISEhSimlzp07p1q2bKnMZrPatm2batKkiTp79qwq\nLi5W3bp1U9u2bbvxV6c6duyodu3apZRSas6cOerJJ58st87KK1sppU6ePKnuuOMOdfToUaWUUo89\n9phauXKlUkqp7t27q+PHjyullNq7d6/605/+VOZY06dPt2y/d+9eFRwcXKb8li1bqvz8fKWUUpcv\nX1ZKKTVt2jT13HPPWY5z4cIFderUKeXu7q7Onz+vioqKVP/+/dWaNWvUvn371MCBAy3bXj/G+PHj\n1aeffqqUKv07uHz5smrXrp0qLCy0nEdKSkqpuCsqSynt/2VSUlKZc12zZo16/vnnlVJKde3aVXXr\n1s0SR3x8vOU8lLr57//QoUNq0KBBlvimTJmili9frpRSSqfTqQ0bNpQpW/xxd9g74YnfOTk5cfz4\ncYKDgwHtklTz5s0t7w8ePBgAHx8ffHx8cHFxAaB9+/akp6dzzz334OnpSWBgIACjRo3in//8Jw89\n9BAnTpygf//+5R53xIgRluUTJ07wzDPPcO7cOQoKCmjVqpXlPVXFq6+BgYG4u7sDEB8fz/Hjx1m/\nfj0AFy9e5Oeff6ZDhw6W7f38/MjIyOCXX34hIyODpk2b4u7uTl5eHjNmzGD37t3Uq1fPsg1A69at\n8ff3L7f8qKgoNm/ejLOzM2fOnOH48eO4urpWGO/OnTsJDw8H4N5776Vfv37s2bMHV1dXAgMDLXXl\n5+dHWlpaqX0zMjLIy8uzXPoZO3YsDz/8sKW+qlpnbdu2xcfHBwB/f3/S0tI4d+4cBw8eZOTIkZbt\nyrtHEhYWxty5cxk/fjxr1qyxtGBKMhqNjB07lsGDBzNs2DAAvv76a/73v/9Ztrn77rvZsmUL/fv3\n55577gG0/0PffPMNISEhnDhxgmnTpjFgwAAGDhx40/Np1KgRffv2ZdOmTXTu3JmCggL0en2pbfbu\n3VtuWdfjL6/uevbsyeLFi/nuu+/Q6/Xk5ORw9uxZ9u7dy1tvvYVSqkq//y+//JLk5GQCAgIs9Xp9\nG2dnZx555JGbnp+4PZJwHIhSCl9fX3bs2FHu+3feeSegJabry9dfFxcXA6XvZSil0Ol0lR63UaNG\nluWpU6fyyiuvEBoayvbt24mMjCx3n5JlFhcXk5+fX+7xAN5991369OlT0WkDMHLkSNavX8/Zs2ct\nH/4ffvghFy9e5OjRo+h0Otq2bWu57HFjGdfFx8ezc+dOkpKSqF+/Pn369Km0A8b1OrpxHVCqnp2d\nnS3nXJGSx6nKfaXryitHKYWrqyvJyck33ffBBx/kxIkTZGVl8b///Y+///3vZeKJjY1lx44dbN68\nmfnz55OSklIm3usxl1x3ffmee+4hOTmZL774gn//+9+sX7+eFStW3DSuSZMmMW/ePLy8vJgwYUKZ\n98srq2SdlVd/LVu2JCcnhy1bttCrVy+ys7NZu3YtjRs3plGjRrf0+584cSJz584ts75Bgwa39LsT\nVSf3cBxIcXExp0+ftnzAFBYW8sMPP9zSMU6fPs3+/fsBradPjx49MBqNNz1uyT/6vLw8WrRoAWC5\nlwHQsGFDy/0gAA8PD5KSkgDtw6ygoKDceEJCQli2bJnlg/rkyZMVfkv/+OOPWb9+veUbfV5eHm5u\nbuh0Onbs2MGpU6cqPf+8vDyaNm1K/fr1OX78OHv37rW85+zsTFFRUZl9evbsySeffIJSiuzsbLZu\n3Uq3bt2q1Dpxc3OjYcOGlh58H330Eb179wZu3iKsKJaSXFxccHV1ZfPmzZbj3XgPB7QP5mHDhjFz\n5ky8vb1p2rRpqfeVUqSnpxMUFERUVBQXL14kJyeH4OBgli1bZtnu4sWLdOvWja1bt5KTk0NxcTHr\n1q2jd+/eZGdno5Ri+PDhzJ07lwMHDpSJo2HDhpZ7T6C1dM1mMx999BGjRo0qs315ZfXq1eumdQJa\ngl28eDG9e/emZ8+e/POf/7TsV9Xff3BwMOvWreP8+fOWczebzZWWLf4YSTgO5I477uCTTz7hySef\nxM/PDz8/P7Zv315mO51OV+E3sE6dOvHmm2/i4+NDeno606dPp379+jc9bslj/e1vf2PYsGE88MAD\nNGvWzPLekCFD+Oijj/Dz82PXrl08+eSTfPHFF5hMJnbv3m25AX/j8f7yl7/g7u5uuTH9+OOPl5uc\nvL29uXz5Mh4eHpZLWGPGjGH37t34+vrywQcf4OXlVW4ZJV8PGDCAvLw8vLy8ePHFF+nWrZtlm/Hj\nx+Pl5WW5aXx9n7CwMNq1a4e3tzc9evQgKiqKli1bllvP5dX7qlWr+Mtf/oLRaGT37t289tprlm0r\n+j2VjOVm5axdu5aFCxdiNBrx8fGxXJq8UVhYGKtXry5zOe16h4Tw8HD8/Pzo0qULf/nLX2jWrBmv\nvvoqp0+fxtvbGz8/P77++ms8PDyYO3cu3bp1Q6/X4+XlxciRIzl9+jQ9e/a03HSPiooqE8PEiRPp\n06dPqa7Mjz32GD169KBJkyZltq+orMr07NmToqIi7r//fkwmE+fPn6dnz55A1X//vr6+vPzyy/Ts\n2RM/Pz+CgoI4c+ZMqboHrWt5yaQs/hjpFl2L1JbutaL2GDp0KNOmTavW52lEzSUtnFpGrj0LR5CT\nk4Ner6d+/fqSbISFtHCEEELYhLRwhBBC2IQkHCGEEDYhCUcIIYRNSMIRQghhE5JwhBBC2IQkHCGE\nEDYhCUcIIYRNWDXhzJ49m44dO9K5c2dGjBjBlStXyM7OJjg4GKPRSEhICDk5OZbto6Ki8Pb2xmAw\nEB8fb1mflJSEyWRCr9czffp0a4YshBDCSqyWcE6cOMGqVatISUnh+++/x9nZmY8//pjZs2czaNAg\njhw5wsCBA5k9ezagJZUNGzZw9OhRtmzZwuTJky1jbj3++OOsWLGCY8eOcerUKTZu3GitsIUQQliJ\n1RLOvffeS7169cjNzaWwsJArV67QqlUr4uLiLIMnjh07ltjYWEAbcTg8PBxnZ2fLYI+JiYmcPn2a\n4uJiTCZTmX2EEELUHFZNOM8++yytWrWiZcuW3HPPPQQHB5OZmWmZ89zFxYWMjAwA0tPT8fDwsOzv\n4eGB2WwmPT0dT09Py3p3d3cZRlwIIWogqyWcn376icWLF5OamsqZM2e4fPkyMTEx1ipOCCGEg7Pa\njJ/79u2je/fultbM8OHD2bVrF66urmRlZeHi4kJmZiZubm6A1qIpOX2v2WzG09Oz3PUlW0IltW/f\nnp9++slapySEELVOu3btOHHihE3KsloLp3379uzdu5erV6+ilOKrr76iXbt2hIaGWlo6MTExhIaG\nAhAaGsratWspLCzEbDaTkpJCYGAgnp6eODk5WWarXL16tWWfG/3000+WeeQd9Wf27Nl2j0HilDgl\nTonx+o8tv6RbrYXTtWtXRowYgdFoxMnJCZPJxNSpU7ly5QphYWGsWLGCFi1asG7dOgD8/f0ZNmyY\nZftly5ZRr149AFauXMmECRPIz8+nX79+DB8+3FphCyGEsBKrJRyAyMhIIiMjS61r0KABX375Zbnb\nz5o1i1mzZpVZ7+/vb2nhCCGEqJlkpAEbCwoKsncIVSJxVi+Js3rVhDhrQoy2Vqtm/NTpdNSi0xFC\nCKuz5eemtHCEEELYhCQcIYQQNiEJRwghhE1IwhFCCGETknCEEELYhCQcIYQQNiEJRwghhE1IwhFC\nCGETknCEEELYhCQcIYQQNiEJRwghhE1IwhFCCGETknCEEELYhCQcIYQQNiEJRwghHFRaWhq9evXC\nYDDQqVMnFixYYHkvPDwck8mEyWSibdu2mEwmABITE/Hz88PPzw8vLy8+/PDDco/9ySefoNfrATh4\n8KBlfWpqKg0bNrQc+6mnnip3/6CgIJKSkgA4efIkHTt2rHByzeusOuOnEEKI21e/fn3efvttfHx8\nuHz5Ml26dCEkJARfX1/WrFlj2e65557jnnvuAcDX15fk5GR0Oh1nz57F29ub8PBw6tevX+rYBoOB\njRs30qlTpzLltm/fvtJZlnU6HTqdDrPZzMCBA1m0aBHBwcE33UcSjhBCOKjmzZvTvHlzABo3bozR\naOTMmTP4+vpatlFKsW7dOrZt2wZAgwYNLO9dvXqVpk2blkk2AJ07d/7D8aWnpxMREcH8+fMZPHhw\npdtb9ZLaDz/8YGmWmUwmmjRpwtKlS8nOziY4OBij0UhISAg5OTmWfaKiovD29sZgMBAfH29Zn5SU\nhMlkQq/XM336dGuGLYQQDic1NZX9+/fTo0cPxo+PJChI+zGZJpCTU8TEiasYPz4SgH379qHX69Hr\n9SxatOi2yvLz86N79+5s3bq13G2UUowfP56nn36a4cOHV+3AykaKiopUixYt1OnTp9XUqVNVdHS0\nUkqp6OhoNW3aNKWUUgcOHFABAQGqsLBQmc1m1aZNG5Wfn6+UUspgMKiDBw8qpZQaOnSo2rBhQ5ky\nbHg6QghhM5cuXVIBAQFq48aNSimleveerUD99vOkgkUKtPUlfffdd6p169YqJyenwmMDKikpyfL6\n2rVr6sKFC0oppQ4ePKhatmypzp8/X2a/oKAg9dhjj6nu3burK1euVOk8bNZp4KuvvqJ9+/Z4enoS\nFxdHREQEAGPHjiU2NhaA2NhYwsPDcXZ2xt3dHb1eT2JiIqdPn6a4uNhyU6zkPkIIUZsVFBTw6KOP\nMnr0aB555JEb3i0ENgJh5e7buXNn2rVrx/fff1/l8urXr8/dd98NgMlkwsfHp8L9X3jhBbp27crI\nkSMpKiqq9Ng2Szhr1qxh1KhRAGRmZtKsWTMAXFxcyMjIALTrgR4eHpZ9PDw8MJvNpKen4+npaVnv\n7u6O2Wy2VehCCGEXSikmTpyIt7c3M2fOtKwvLr6+9BXgBbS0vJeWlmb58D916hTfffcd7du3r7Sc\n67Kzsyn+rYDU1FRSUlIq3F+n07F48WLuvvtuJk6cWOn52CTh5Ofns2nTJkaOHGmL4oQQolbYtWsX\nMTExbNu2zXIvPDr6c37rjQysBUaV2mfbtm34+flhNBp5+OGHefvtty1f8J944glLV+aNGzdavsgP\nGjSIgQMHArB161aMRiNGo5EhQ4awdOlSXFxcbhrnBx98wC+//MKLL7540+1s0kvt888/x9/fH1dX\nVwBcXV3JysrCxcWFzMxM3NzcAK1Fk5aWZtnPbDbj6elZ7vqSLaGSIiMjLctBQUEEBQVV/wkJIYQN\n9OjRw9LaOH8eXn4Z3ngDWrVKRLvKtbLMPuPGjWPcuHHlHm/58uUkJCRYPicnTpzInDlzOHv2rGWb\nESNGMGLEiEpju94rDqBevXp88cUXle5jk4Tz8ccfWy6nAYSGhhITE8OMGTOIiYkhNDTUsv7JJ59k\nxowZnD17lpSUFAIDA6lXrx5OTk4kJydjMplYvXp1hRVaMuEIIURNpxSsXg3PPw/Dh8O338KMGdC8\neWSZbdu0qfx4N34RnzNnTrXFWhmdKnnxzgpyc3Np3bo1J0+e5K677gK0a4RhYWH8+uuvtGjRgnXr\n1lkeWpo/fz4xMTE4OTmxcOFCQkJCAK1b9KRJk8jPz6dfv34sXbq07MnodFj5dIQQwmZ++AGmTNFa\nN+++Cw88UP1l2PJz0+oJx5Yk4QghaoO8PIiKgn/9C155BaZOhTusdD3Klp+bMtKAEEI4kPh4eOop\n8PODQ4eggtvVNZIkHCGEcAC//ALPPAN798Jbb8GgQfaOqPrJaNFCCGFHRUXapTOjUbvpf+xY7Uw2\nIC0cIYSwm4MH4ckn4c47ISEBfpstoNaSFo4QQtjYxYta1+aBA7VeaNu31/5kA5JwhBDCZpSC9evB\n2xsuXdIunz3+ODjVkU9iuaQmhBA28PPPWvfmU6fgo4+gVy97R2R7dSSvCiGEfeTna8/UBAZqSSY5\nuW4mG5AWjhBCWM2OHVqngLZtYf9+7d+6TBKOEEJUs6wsbeyzr76CJUtg2DDQ6ewdlf3JJTUhhKgm\nxcXw/vtaj7OmTbWBNocPl2RznbRwhBCiGqSkaF2cr12DLVvgtwmKRQnSwhFCiD8gNxdeegn69IHR\no2HPHkk2FZGEI4QQt2nzZu3yWVoaHD2qtXCcne0dleOSS2pCCHGLzGaYNk1LMsuXQ3CwvSOqGaSF\nI4QQVVRYCNHR2tQBRqOWcCTZVJ20cIQQogoSE2HyZHBxgd27oWNHe0dU80jCEUKImzh/HmbNgv/+\nFxYuhFGjpJvz7ZJLakIIUQ6lYPVqbaBN0J6pGT1aks0fYfWEk5OTw8iRI/H19cXLy4u9e/eSnZ1N\ncHAwRqORkJAQcnJyLNtHRUXh7e2NwWAgPj7esj4pKQmTyYRer2f69OnWDlsIUYf9+KN2b+aNN2Dj\nRnjnHe1BTvHHWD3hPPHEEwwfPpzDhw9z7NgxvL29mT17NoMGDeLIkSMMHDiQ2bNnA1pS2bBhA0eP\nHmXLli1MnjyZgoICAB5//HFWrFjBsWPHOHXqFBs3brR26EKIOiYvDyIjoXt3bdbNAwfgwQftHVXt\nYdWEc+7cOQ4dOsSoUaO0wpycuPvuu4mLiyMiIgKAsWPHEhsbC0BsbCzh4eE4Ozvj7u6OXq8nMTGR\n06dPU1xcjOm3p6lK7iOEENXhyy/BYNB6niUnw8yZcIfc5a5WVk04x48fx9XVlcceewwfHx/GjRvH\npUuXyMzMpFmzZgC4uLiQkZEBQHp6Oh4eHpb9PTw8MJvNpKen4+npaVnv7u6O2Wy2ZuhCiDri7Fnt\n3syf/6x1ef70UyjxcSOqkVXzd3FxMfv372fJkiV07dqVGTNm8Oqrr1qzSCIjIy3LQUFBBAUFWbU8\nIUTNVFQE770Hf/87TJyoPcDZqJG9o7K+hIQEEhIS7FK2VROOp6cn7u7udO3aFYARI0Ywd+5c3Nzc\nyMrKwsXFhczMTNzc3ACtRZOWlmbZ32w24+npWe76ki2hkkomHCGEKE9ysjZPTb16sG0b+PjYOyLb\nufGL+Jw5c2xWtlUvqXl6euLi4sKPP/4IwFdffYWXlxcDBw4kJiYGgJiYGEJDQwEIDQ1l7dq1FBYW\nYjabSUlJITAwEE9PT5ycnEhOTgZg9erVln2EEKKqLl3S7s0MGKA9xLljR91KNvZm9Vti77//PmPG\njOHKlSu0bt2a1atXo5QiLCyMFStW0KJFC9atWweAv78/w4YNw2g04uTkxLJly6hXrx4AK1euZMKE\nCeTn59OvXz+GDx9u7dCFELWEUrBhA8yYAf37w7Fj2ogBwrZ0Sill7yCqi06noxadjhCiGpw8CVOn\nav++8w707m3viByLLT83ZaQBIUStlJ8P//gHdO0KPXrAoUOSbOxNepkLIWqdb77ROgW0bg379sH9\n99s7IgGScIQQtUhWFrzwAsTHw5IlMHy4jH3mSOSSmhCixisuhpUrtdk3775bG2jz0Ucl2TgaaeEI\nIWq0Y8e0qZ2vXoXPP4cuXewdkaiItHCEEDXSlSvw8ssQFATh4bB3ryQbRycJRwhR48TGapfPUlPh\nyBF46ilwdrZ3VKIycklNCFFjmM0wfTocPgzLlsFDD9k7InErpIUjhHB4hYWweDH4+WlD0aSkSLKp\niaSFI4RwaPv2aeOe3Xsv7NoFnTrZOyJxu6SFI4RwSDk52r2ZoUPhuefgq68k2dR0knCEEA5FKfjo\nI/D21p6v+fZbGDNGnqmpDeSSmhDCYRw/rrVqMjK0mTe7dbN3RKI6SQtHCGF3eXkwZ46WYAYOhKQk\nSTa1kbRwhBB29dVXWqtGr9dm4vT0tHdEwlok4Qgh7OLXX+GZZ7SeZ0uXwsMP2zsiYW1ySU0IYVPF\nxfDuu9rzNB4e2lhokmzqBmnhCCFs5tAhbZ4aZ2fYuhUMBntHJGxJWjhCCKu7dEm7fBYSAk88oU2Q\nJsmm7rF6wmnTpg1GoxGTyURgYCAA2dnZBAcHYzQaCQkJIScnx7J9VFQU3t7eGAwG4uPjLeuTkpIw\nmUzo9XqmT59u7bCFENVAKdiwQXumJjtbG5Jm4kRwkq+6dZOysjZt2qhz586VWjd16lQVHR2tlFIq\nOjpaTZs2TSml1IEDB1RAQIAqLCxUZrNZtWnTRuXn5yullDIYDOrgwYNKKaWGDh2qNmzYUKYsG5yO\nEKKKTp5UavBgpTp3VmrbNntHIypiy89Nm3zP0M7pd3FxcURERAAwduxYYmNjAYiNjSU8PBxnZ2fc\n3d3R6/UkJiZy+vRpiouLMZlMZfYRQjiWggJ4/XUICNCepTl8WJuzRgirJxydTme5fPbWW28BkJmZ\nSbNmzQBwcXEhIyMDgPT0dDw8PCz7enh4YDabSU9Px7NE53x3d3fMZrO1QxdC3KKdO8FkgoQEbdDN\nWbOgfn17RyUchdV7qe3duxc3NzcyMzMZMGAAnTt3tmp5kZGRluWgoCCC5KuVEFaXlQUvvghffAHR\n0TBihIx95qgSEhJISEiwS9k3TTh79+7l5MmTeHt74+vre1sFuLm5AeDq6sqIESPYv38/rq6uZGVl\n4eLiQmZmpmUbDw8P0tLSLPuazWY8PT3LXV+yJVRSyYQjhLAupeCDD7RkEx6uDbR59932jkrczI1f\nxOfMmWOzsiu8pPbyyy8zbtw4PvvsM4YOHcrSpUtv+eBXrlzhypUrAOTm5rJlyxb0ej2hoaHExMQA\nEBMTQ2hoKAChoaGsXbuWwsJCzGYzKSkpBAYG4unpiZOTE8nJyQCsXr3aso8Qwj6+/Va7N/Ovf0Fc\nHCxZIslGVKKi3gTt2rVTubm5SimlsrKylMFguOUeCT///LMyGo3K19dXdejQQf3tb39TSil17tw5\n1b9/f2UwGFRwcLA6f/68ZZ958+YpLy8vpdfr1ZYtWyzrDxw4oPz8/JS3t7d6+umnyy3vJqcjhKgm\nublKvfyyUi4uSr31llKFhfaOSPwRtvzc1P1WYBkmk8nSoijvtSPS6XRlesQJIapPXBxMnQqBgbBo\nEbRsae+IxB9ly8/NChNOkyZN6NWrl+X1N998Q8+ePS0BfvbZZzYJ8FZIwhHCOtLTYcYMbTTnf/1L\nGzFA1A4OkXBu1otBp9PRu3dva8V02yThCFG9Cgu1BPPqq9oUAi+/DA0b2jsqUZ0cIuFcd/nyZRo2\nbIizszMARUVF5OXl0ahRI5sEeCsk4QhRffbt0wbabNIE3nkHrPxEg7ATW35uVvrgZ9++fcnPz7e8\nzsvLo1+/flYNSghhPzk58Je/aFMGzJypjeosyUZUh0oTTn5+Pg1LtKEbNWpEXl6eVYMSQtieUrBm\njTbQZmFjcXsJAAAgAElEQVSh1u05IkIe4BTVp9KRBu644w4OHz5sefDz0KFDOMlQr0LUKidOaPdo\nzp6F9euhe3d7RyRqo0oTzpIlSxg0aBBt2rQBIDU1lbVr11o7LiGEDVy7pg20uXSp1iFg2jSoV8/e\nUYnaqtJOAwDXrl3jyJEj6HQ6jEYj9R10ND7pNCBE1W3dClOmgJeXlnBatbJ3RMIeHKqX2o0OHDhA\ny5YtaemAT3xJwhGicr/+Cs89Bzt2aIlm6FB7RyTsyaF6qd1o6dKlDBo0iLCwMGvEI4SwkuJiWLZM\nm9r5vvvg2DFJNsK2brmFc93Fixe528FG6pMWjhDlO3xYe6ZGp4N33wWj0d4RCUfhUC2c4cOHExsb\nS3Fxcan1jpZshBBlXb4Mzz4LwcEwYYI2QZokG2EvlSacKVOmsHr1atq3b89LL73EDz/8YIu4hBB/\ngFLw3/9qz9RkZUFKCjzxBMgTDcKeqnxJLScnhzVr1vDaa6/RqlUrJk6cSEREhEP1WJNLakLAqVPw\n9NPw44/akDR9+tg7IuHIHOqSGsC5c+f4z3/+w7///W+6dOnCtGnTOHz4MMHBwdaOTwhRRQUFsGAB\n+PvDAw9o920k2QhHUumDn8OGDeP7778nIiKCTZs2cd999wEQHh7OAw88YPUAhRCV27VL6xTQsiUk\nJkK7dvaOSIiyKr2kFhcXV2Y652vXrnHnnXdaNbDbIZfURF1z7hy89JI2MVp0NIwcKWOfiVvjUJfU\n/vrXv5ZZ161bN6sEI4SoGqXggw9Ar9fmp/n2W3jsMUk2wrFVeEntl19+4cyZM1y9epWDBw+ilEKn\n05Gbm8vFixdtGaMQddb48ZGkppZel5sLaWng4RHJ5s0QEGCX0IS4ZRUmnC+++IIPPviA9PR0nn32\nWcv6hg0b8uqrr1a5gKKiIgICAvDw8GDTpk1kZ2cTFhbGr7/+yn333cfatWu55557AIiKimLVqlU4\nOzuzcOFCHnroIQCSkpKYNGkS+fn59O/fnyVLltzu+QpRo6SmwvbtkWXWt28fSWIi/DYvohA1g6rE\n+vXrK9vkphYuXKhGjx6thgwZopRSaurUqSo6OloppVR0dLSaNm2aUkqpAwcOqICAAFVYWKjMZrNq\n06aNys/PV0opZTAY1MGDB5VSSg0dOlRt2LCh3LKqcDpC1Ci9e89W2gW00j+9e8+2d2iilrDl52aF\n93BWrVoFaNMRLFq0yPKzcOFCFi1aVKVkZjabiYuLY9KkSZabUnFxcURERAAwduxYYmNjAYiNjSU8\nPBxnZ2fc3d3R6/UkJiZy+vRpiouLMZlMZfYRoraTq9eiNqnwktqVK1cAuHTpEroSdyLVb/dyqmLm\nzJm88cYbpe75ZGZm0qxZMwBcXFzIyMgAID09nb59+1q28/DwwGw24+zsjKenp2W9u7s7ZrO5SuUL\nUVPl52sdAk6csHckQlSfChPO5MmTAYiMjLytA2/evBk3NzdMJhMJCQm3dYzbUTLeoKAggoKCbFa2\nENXh3Xe1eWpAG5rm22/tG4+oXRISEmz6mVxSpQ9+Pvvss8ydO5d69eoxYMAADh48SHR0NI8//vhN\n99u9ezefffYZcXFx5OXlcfHiRSIiInB1dSUrKwsXFxcyMzNxc3MDtBZNWlqaZX+z2Yynp2e56z08\nPCos93YTpBD2dvo0tG6tLffrB/Hx2oCbrq6RZbb9bQJeIW7ZjV/E58yZY7vCK7vJ4+vrq5TSOg9M\nnDhR5eTkKIPBcEs3ihISEtTgwYOVUqU7DSxatEg9/fTTSqnfOw0UFBSotLQ01bp16wo7DXz66afl\nllOF0xHC4RQXKzVs2O8dAo4ft3dEoi6x5edmpS2cgoICQLvZP2LECJo0aYLzbfTFvH7fZ86cOYSF\nhbFixQpatGjBunXrAPD392fYsGEYjUacnJxYtmwZ9X6bXH3lypVMmDCB/Px8+vXrx/Dhw2+5fCEc\n0RdfwIAB2vKCBfD88/aNRwhrqnRom+eff57PP/+cevXqkZiYyKVLlxgwYAD79++3VYxVJkPbiJri\n0iVwcdE6B7i5ac/bNGxo76hEXWTLz80qTU+QmZnJvffei7OzM7m5uVy4cIGWLVvaIr5bIglH1ASz\nZ8Pcudryjh3Qs6d94xF1my0/Nyu9pHbt2jVWrFjBN998A0Dv3r2ZPn261QMTorZJSQGDQVt+/HFY\nscK+8Qhha5W2cMaMGcOdd97J2LFjUUrx8ccfc/XqVVavXm2rGKtMWjjCERUWQrducOCA9vrsWWje\n3L4xCXGdQ11S0+v1HDt2rNJ1jkASjnA0q1fD2LHa8qpVvy8L4Sgc6pKak5MTqamptPmt439qaipO\nMjG6EDf166/QooW2HBAAe/bAHZX+tQlRu1X6J/D666/z4IMP0qlTJwB+/PFH3n//fasHJkRNNWEC\nrFypLR89Cj4+9o1HCEdRpV5qV65cISUlBZ1Oh4+PDw0dtP+mXFIT9rRz5+89zl55BW5hFg8h7Mah\nZvxcunQpBQUFBAYG0rVrV/Lz83nrrbdsEZsQNcLVq1ongJ49oX59uHBBko0Q5ak04bz//vs0adLE\n8rpJkyb8+9//tmpQQtQUCxfC//0fZGTA55/DtWtw9932jkoIx1TpPZz8/PxSr5VS5OXlWS0gIWqC\nEyegQwdtedgw+PRTqOKsHULUWZUmnL59+xIeHs4TTzyBUorly5eXmrdGiLqkuBhCQuCrr7TXp05B\nq1b2jUmImqLSTgOFhYW8+eabfP311wAEBwczderU2xrA09qk04Cwpv/+V2vNALz99u9z1ghRkznU\ng58lZWdnc/LkSfz9/a0Z022ThCOs4fx5uPdebbl9ezh2TOscIERt4FC91Hr27Elubi5ZWVmYTCam\nTJnCtGnTbBGbEHb3zDO/J5t9++D4cUk2QtyuShPO5cuXadSoERs2bGDChAns27ePbdu22SI2Iewm\nKUnrBBAdDdOmaVOjde1q76iEqNkq7TRQWFhIZmYmn376Ka/+9nCBDG0jaqv8fG1E5x9/1F5nZUGz\nZvaNSYjaotLMMWvWLIKCgrj//vsJDAwkNTWV+++/3xaxCWFT770Hd96pJZv167VWjSQbIarPLXUa\ncHTSaUDcjrS037s29+mjdXmWRryoKxxitOgFCxbwwgsv8PTTT5d5T6fTsXTpUqsGJoS1KQUjR2oP\nbYLWsrn+MKcQovpV+D3u3XffZefOnfj7+xMQEEBAQAD+/v6Wn8rk5eXRtWtXTCYTHTt2ZObMmYDW\ntTo4OBij0UhISAg5OTmWfaKiovD29sZgMBAfH29Zn5SUhMlkQq/Xy2yjolp8+aXWivn0U3j9dS35\nSLIRwspUBaKjo9WDDz6oWrVqpZ5//nl18ODBijat0JUrV5RSShUUFKgHHnhAbd26VU2dOlVFR0db\nypg2bZpSSqkDBw6ogIAAVVhYqMxms2rTpo3Kz89XSillMBgs5Q8dOlRt2LCh3PJucjpCKKWUunhR\nqQYNlAKlXFyUys21d0RC2JctPzcrbOHMmDGDPXv2sH37du69914mTJhAp06dmDNnDj9e78JTievT\nGOTn51NUVISbmxtxcXFEREQAMHbsWGJjYwGIjY0lPDwcZ2dn3N3d0ev1JCYmcvr0aYqLizGZTGX2\nEeJWREZqA2vm5UFCAmRmagNvCiFso9Jbo23atOGll14iOTmZNWvWsHHjRry8vKp08OLiYvz8/Gje\nvDl9+vRBr9eTmZlJs9+6/ri4uJCRkQFAeno6Hh4eln09PDwwm82kp6fj6elpWe/u7o7ZbL6lkxR1\n27Fj2jM1c+bA//t/2nhovXvbOyoh6p4qPYcTFxfHmjVr+Prrr+nTpw9z5syp0sGdnJw4dOgQFy5c\nICQkxCYPjEZGRlqWg4KCCAoKsnqZwjEVFUH37toIAQC//PL7tM9C1FUJCQkkJCTYpewKE058fDxr\n1qwhNjaWwMBARo0axXvvvUfjxo1vuZAmTZowaNAgEhMTcXV1JSsrCxcXFzIzM3FzcwO0Fk1aWppl\nH7PZjKenZ7nrS7aEblQy4Yi666OPYMwYbfk//9FaNkKIsl/Eq9qAqA4VXlL7xz/+Qbdu3fjuu+/Y\ntGkTo0ePvqVkc+7cOS5dugTA1atX+fLLLzEYDISGhhITEwNATEwMoaGhAISGhrJ27VoKCwsxm82k\npKQQGBiIp6cnTk5OJCcnA7B69WrLPkLcKCNDu3w2ZgyYTFBQIMlGCEdRYQtn69atf+jAZ86cYdy4\ncZYJ20aPHs2gQYPo1q0bYWFhrFixghYtWrBu3ToA/P39GTZsGEajEScnJ5YtW0a9evUAWLlyJRMm\nTCA/P59+/foxfPjwPxSbqJ0mTYL339eWjxzRhqgRQjgOGWlA1Hi7dkGPHtryrFkwb5594xGiJnGI\nkQaEcHRXr8L998PZs3DHHXDunNbtWQjhmGTEKFEjLVqkPUNz9izExWn3aiTZCOHYpIUjapSfftJm\n3QQYOhQ2btQ6CQghHJ8kHFEjFBfDwIFwfYi91FRo3dquIQkhbpFcUhMO73//A2dnLdm8+aY20KYk\nGyFqHmnhCId1/jzce6+23LYtfPedNkGaEKJmkhaOcEjPPfd7sklMhJ9/lmQjRE0nLRzhUA4ehOvT\nLU2dql1CE0LUDpJwhEMoKACjEb7/XnudmQkuLvaNSQhRveSSmrC7f/8b6tfXks26dVqnAEk2QtQ+\n0sIRdpOeDtcH/u7dG7Zu1aZ9FkLUTvLnLWxOKQgL+z3Z/PCDNgOnJBshajf5Exc29dVXWmJZtw7m\nz9eST8eO9o5KCGELcklN2MTly9psm7m50LQppKVBo0b2jkoIYUvSwhFWN3cu3HWXlmy2bYPsbEk2\nQtRF0sIRVvPdd+DtrS2PHQsffigDbQpRl0nCEdWuqEibEG3vXu11ejq0bGnfmIQQ9ieX1ES1WrNG\nmwxt715YsULrFCDJRggB0sIR1SQjA5o315Z9fWH/fqhXz74xCSEci1VbOGlpafTq1QuDwUCnTp1Y\nsGABANnZ2QQHB2M0GgkJCSEnJ8eyT1RUFN7e3hgMBuKvT34CJCUlYTKZ0Ov1TJ8+3Zphi1s0efLv\nyebQIe1Hko0QogxlRWfPnlVHjx5VSil16dIl1aFDB3Xo0CE1depUFR0drZRSKjo6Wk2bNk0ppdSB\nAwdUQECAKiwsVGazWbVp00bl5+crpZQyGAzq4MGDSimlhg4dqjZs2FCmPCufjrjB7t1KaRfNlHrp\nJXtHI4S4Hbb83LRqC6d58+b4+PgA0LhxY4xGI+np6cTFxREREQHA2LFjiY2NBSA2Npbw8HCcnZ1x\nd3dHr9eTmJjI6dOnKS4uxmQyldlH2F5enjZKQPfuWq+znByIirJ3VEIIR2ezTgOpqans37+fHj16\nkJmZSbNmzQBwcXEhIyMDgPT0dDyuj3cCeHh4YDabSU9Px9PT07Le3d0ds9lsq9BFCYsXQ8OGWs+z\nzZu1qZ+bNLF3VEKImsAmnQYuX77MiBEjWLJkCXfffbdVy4qMjLQsBwUFERQUZNXy6oqTJ+H++7Xl\nIUO0aZ/lmRohap6EhAQSEhLsUrbVE05BQQGPPvooY8aM4ZFHHgHA1dWVrKwsXFxcyMzMxM3NDdBa\nNGlpaZZ9zWYznp6e5a4v2RIqqWTCEX+cUhAaClu2aK9PnoQ2bewakhDiD7jxi/icOXNsVrZVL6kp\npZg4cSLe3t7MnDnTsj40NJSYmBgAYmJiCA0Ntaxfu3YthYWFmM1mUlJSCAwMxNPTEycnJ5KTkwFY\nvXq1ZR9hPZs2aQNtbtkCS5dqyUeSjRDidul+66VgFTt37qRXr14YjUZ0v11/iYqKIjAwkLCwMH79\n9VdatGjBunXruOeeewCYP38+MTExODk5sXDhQkJCQgCtW/SkSZPIz8+nX79+LF26tOzJ6HRY8XTq\njJwcbYBNgNattekD7rzTvjEJIazDlp+bVk04tiYJ54974QV44w1tec8eePBB+8YjhLAuW35uykgD\nAtAe1vyt1zlTpsDbb9s3HiFE7SMJp44rKNASzbFj2uvMTHBxsW9MQojaSQbvrMPefx/q19eSzdq1\nWqcASTZCCGuRFk4dlJ6ujRQA0LOnNimas7N9YxJC1H7SwqlDlIJRo35PNt99Bzt2SLIRQtiGJJw6\nYutW7ZmaNWvgtde05NO5s72jEkLUJXJJrZbLzYX77oNLl7Qxz9LToVEje0clhKiLpIVTi732GjRu\nrCWbr7/WHuiUZCOEsBdp4dRC338PXl7a8ujREBMjA20KIexPEk4tUlQEvXvDrl3a6/R0aNnSvjEJ\nIcR1ckmtlli7Fu64Q0s277+vdQqQZCOEcCTSwqnhMjPht9kdMBggKQnq1bNvTEIIUR5p4dRgTz31\ne7JJToYjRyTZCCEclyScGmjvXq0TwDvvaKM7KwV+fvaOSgghbk4uqdUgeXnQsSNcn/z0/Hn4bRoh\nIYRweNLCqSGWLoWGDbVks2mT1qqRZCOEqEmkhePgUlOhbVttOTQUNm+WZ2qEEDWTtHAclFIwePDv\nyebnnyE2VpKNEKLmkoTjgGJjtYE2Y2Nh8WIt+VxPPEIIUVNZNeFMmDCB5s2bYzAYLOuys7MJDg7G\naDQSEhJCTk6O5b2oqCi8vb0xGAzEx8db1iclJWEymdDr9UyfPt2aIdvVhQtaC2bwYPD0hKtXoRaf\nrhCijrFqwnn88cfZsmVLqXWzZ89m0KBBHDlyhIEDBzJ79mxASyobNmzg6NGjbNmyhcmTJ1NQUGA5\nzooVKzh27BinTp1i48aN1gzbLl5++fdOALt3w+nT0KCBfWMSQojqZNWE07NnT5o2bVpqXVxcHBER\nEQCMHTuW2NhYAGJjYwkPD8fZ2Rl3d3f0ej2JiYmcPn2a4uJiTCZTmX1qg8OHtVbNP/4Bkydrl8+6\ndbN3VEIIUf1s3kstMzOTZs2aAeDi4kJGRgYA6enp9O3b17Kdh4cHZrMZZ2dnPD09Levd3d0xm822\nDdoKCgrA3x+OHtVeZ2SAq6t9YxJCCGuqdd2iIyMjLctBQUEEBQXZLZaKrFwJEyZoyx9/DOHh9o1H\nCFF3JCQkkJCQYJeybZ5wXF1dycrKwsXFhczMTNx+GwzMw8ODtOuP0ANmsxlPT89y13t4eFR4/JIJ\nx9GcOQPu7tpy9+6wYwc4O9s3JiFE3XLjF/E5c+bYrGybd4sODQ0lJiYGgJiYGEJDQy3r165dS2Fh\nIWazmZSUFAIDA/H09MTJyYnk5GQAVq9ebdmnplAKxo79Pdl8+602jYAkGyFEXaJTSilrHXzUqFFs\n376drKwsmjdvzty5cxk6dChhYWH8+uuvtGjRgnXr1nHPb92z5s+fT0xMDE5OTixcuJCQkBBA68E2\nadIk8vPz6devH0uXLi3/ZHQ6rHg6t2XbNrh+a2ruXPjb3+wbjxBClGTLz02rJhxbc6SEk5urtWgu\nXIC77tIupzVubO+ohBCiNFt+bspIA1YQFaUllwsX4Msv4eJFSTZCCCEJpxxFRUWYTCaGDBliWffM\nM8/g7e2Nt7c3gwcP5ty5c5b3ro+Q0LGjAZ0unlmztJ5nxcXQv7+2TVBQEElJSQCcPHmSjh078uWX\nX9r0vIQQwp4k4ZRjyZIleHt7oysxUuaQIUNISUnh22+/xcfHh9deew34fYSEZs2Ocvz4FmAyP/+c\nz8cflx5oU6fTodPpMJvNDBw4kEWLFhEcHGzjMxNCCPuRhHMDs9lMXFwckyZNKnVds0+fPjg5adX1\npz/9ifT0dAAWLIjlwIFwdu50ZvlydwYN0pOevq/cY6enpxMSEsL8+fMZPHiw9U9GCCEcSK178POP\nmjlzJm+88QYXL16scJv33nuPQYPCf2vBpOPu3peTJ6FePThwwKPckRCUUowfP5558+YxfPhw652A\nEEI4KGnhlLB582bc3NwwmUwV9tqYN28e335bnylTxgAwfDgsXKglm5vR6XT079+fVatWcfXq1eoO\nXQghHJ4knBJ2797NZ599Rtu2bRk1ahRbt25l3Lhxlvf//vcPeOWVWH7+eTXPPac90OnnV/4ICeV5\n4YUX6Nq1KyNHjqSoqMjq5yOEEI5EnsOpwPbt2/nnP//Jpk2buHYNWrXaQkbGs8B2srNduD4IdlJS\nEk8++SR79uzh7Nmz9OjRg+PHj1PvhiZPnz59WLhwIV26dGH06NHUr1+f//znP9USqxBC3C55DsdB\n6HQ63npLm5cmI+NpXF0v4+cXTN++Jp566ikA/P39GTZsGEajkQEDBrBs2bIyyeZGH3zwAb/88gsv\nvviiLU5DCCEcgrRwKnDqFLRpoy0PGABxcaW7OQshRG1gyxZOne+lNn58JKmpv79WClJSIDsbIJKf\nfoL777dTcEIIUYvU+YSTmgrbt0eWWX///VqyEUIIUT3kHk4FKuhoJoQQ4jZJwhFCCGETknCEEELY\nhCQcIYQQNlHnOw1oXZ8jK1gvhBCiushzOEIIUYfJSAMV2LJlCwaDAW9vb15//XV7hyOEEOIW1JiE\nc+3aNaZMmcKWLVs4cuQI69evJzk52d5h3bKEhAR7h1AlEmf1kjirV02IsybEaGs1JuEkJiai1+tx\nd3fnjjvuICwsjNjYWHuHdctqyn9CibN6SZzVqybEWRNitLUak3BuHPbfw6P8ic6EEEI4phqTcHQy\ncqYQQtRoNaaX2jfffMPrr7/O5s2bAXjjjTfIz8/nr3/9q2Wb9u3b85MMgCaEEFXWrl07Tpw4YZOy\nakzCycvLo3PnzuzatQs3Nze6d+/OsmXL6NKli71DE0IIUQU15sHPBg0a8M477xASEkJxcTERERGS\nbIQQogapMS0cIYQQNVuN6TRwXVUe/pw2bRp6vZ4uXbrY7VmdyuJMSEigSZMmmEwmTCYTr732ms1j\nnDBhAs2bN8dgMFS4jSPUZWVxOkJdAqSlpdGrVy8MBgOdOnViwYIF5W5n7zqtSpz2rtO8vDy6du2K\nyWSiY8eOzJw5s9zt7F2XVYnT3nVZUlFRESaTiSFDhpT7vtXrU9UgeXl5qk2bNspsNquCggIVEBCg\nDh48WGqb9evXq6FDhyqllDp48KDy9fV1yDi3bdumhgwZYvPYStqxY4c6ePCg8vHxKfd9R6hLpSqP\n0xHqUimlzp49q44ePaqUUurSpUuqQ4cO6tChQ6W2cYQ6rUqcjlCnV65cUUopVVBQoB544AG1devW\nUu87Ql0qVXmcjlCX1y1cuFCNHj263HhsUZ81qoVTlYc/4+LiiIiIAMBkMlFYWGjz53Wq+pCqsvPV\nzJ49e9K0adMK33eEuoTK4wT71yVA8+bN8fHxAaBx48YYjUbOnDlTahtHqNOqxAn2r9OGDRsCkJ+f\nT1FREc2bNy/1viPUZVXiBPvXJWjPMsbFxTFp0qRy47FFfdaohFOVhz8d4QHRqsSg0+nYs2cPBoOB\nfv36cfjwYZvGWBWOUJdV4Yh1mZqayv79++nRo0ep9Y5WpxXF6Qh1WlxcjJ+fH82bN6dPnz54e3uX\net9R6rKyOB2hLgFmzpzJG2+8gZNT+R/7tqjPGtNLDar+8OeN2dvWD41WpTx/f3/MZjMNGjQgPj6e\nRx55hJMnT9ogultj77qsCkery8uXLzNy5EiWLFnCXXfdVeZ9R6nTm8XpCHXq5OTEoUOHuHDhAiEh\nISQkJBAUFFRqG0eoy8ridIS63Lx5M25ubphMppsOuWPt+qxRLRwPDw/S0tIsr9PS0kpl5PK2MZvN\neHh42CzG8mIoL87GjRvToEEDAB566CHq16/P2bNnbRpnZRyhLqvCkeqyoKCARx99lNGjR/PII4+U\ned9R6rSyOB2pTps0acKgQYPYu3dvqfWOUpfXVRSnI9Tl7t27+eyzz2jbti2jRo1i69atjBs3rtQ2\ntqjPGpVwunbtSkpKCunp6RQUFLBu3ToGDhxYapvQ0FBWr14NwMGDB3F2dsbd3d3h4szKyrIsJyUl\nkZubi5ubm03jrIwj1GVVOEpdKqWYOHEi3t7eFfaqcoQ6rUqc9q7Tc+fOcenSJQCuXr3Kl19+WaaX\noiPUZVXitHddAsyfP5+0tDROnjzJmjVr6Nu3Lx9++GGpbWxRnzXqklpFD38uW7YMgMmTJ/Poo4+y\nbds29Ho9d955JytXrnTIOD/++GPee+89AOrXr89HH31U4bVVaxk1ahTbt28nKysLT09P5syZQ0FB\ngSVGR6jLqsTpCHUJsGvXLmJiYjAajZhMJkD7Qz99+rQlVkeo06rEae86PXPmDOPGjUMpRV5eHqNH\nj2bQoEEO97delTjtXZfluX6pzNb1KQ9+CiGEsIkadUlNCCFEzSUJRwghhE1IwhFCCGETknCEEELY\nhCQcIYQQNiEJRwghhE1IwhG12s2mNti7dy9t27a1DBt/11130blzZ0wmE+PHj7/lslJTU0uVs3Pn\nTrp164bJZMJoNLJ8+fJKj5GQkFBq6PhXXnmFgQMHkp+fD8CcOXOA0kOQlLeupAEDBtC0adMKh6QX\nwlZq1IOfQtyqxx9/nKeffrrMMB4An3/+OYsWLWLYsGEA9OnTh4ULF1bLTLI///wzY8aMYcuWLXh5\neXHhwgUGDhxIkyZNeOyxx6p0jNdee409e/YQFxfHt99+a3kQ73//+x/79u1j5MiRZdbNmzevzHFe\neOEFrly5YnnITwh7kRaOqNVuNrXB1q1b6d+/f6l1FbUSNm7caNn2l19+oVOnTmRkZFRY7rvvvsvk\nyZPx8vICtHG2FixYwKJFi24a7/UnwBcuXMgXX3zBpk2buPPOO/Hz82PKlCmsWrWK+Ph45s2bV+66\n8vTt25fGjRvftFwhbEESjqiTsrKyqFevXplRkisaHXfYsGHcd999vPXWW/z5z39m7ty5Nx0PKyUl\nhYCAgFLr/P39OXr06E3jUkqxc+dOli1bxueff87//d//AXD48GHeffddIiIieOihh/jb3/5W7joh\nHMNqM8sAAAHlSURBVJkkHFEnxcfHExISckv7vPnmm0RFRdGgQQPCwsIq3b681lJlI0npdDo6dOhg\nifE6X19fFi9ezL333svQoUN59dVXy10nhCOThCPqpC1btjBgwIBb2ictLQ1nZ2d+/fXXShOHwWAg\nKSmp1LqkpCR8fX1vup9SiubNmxMbG8uMGTPKzF0ye/bsMvuUXLdv3z5LJ4jNmzdb1jviPEai7pGE\nI+ocpRRHjhyp9MO/pMLCQiZOnMiaNWvo3Llzpfdi/vznP/Pee+/x/fffA3DhwgVeeuklZsyYAWj3\nhGbNmlXh/h06dGDDhg2MHTv2lmaIDAwMJDk5meTkZAYPHmxZL2P0CkcgvdRErXbj1AZz587FYDBY\nhuWvqqioKHr16kX37t0xGo107dqVwYMH06lTp1LbXW9JtGvXjlWrVjF+/Hjy8vIoKipi6tSplktx\nP/30E02aNClTjk6nsxwjICCAlStX8vDDD5OQkEDbtm1vpwro2bMnP/zwA5cvX8bT05MVK1YQHBx8\nW8cS4o+Q6QlEnTNv3jw6dOhQ5e7J1hAREcHixYtp1qyZ3WIQwtYk4QghhLAJuYcjhBDCJiThCCGE\nsAlJOEIIIWxCEo4QQgibkIQjhBDCJiThCCGEsAlJOEIIIWzi/wPFTAXXZ9H/2gAAAABJRU5ErkJg\ngg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x3701990>"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 14.8 - Page No :737\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variable\n",
      "M = 153.82;  \t\t\t #[kg/mole] - molecular weight of ccl4\n",
      "T1 = 349.90;  \t\t\t #[K] - temperature1\n",
      "T2 = 293.15;  \t\t\t #[K] - temperature 2\n",
      "cp1 = 0.9205;  \t\t\t #[KJ/kg*K] - heat capacity at temperature T1\n",
      "cp2 = 0.8368;  \t\t\t #[KJ/kg*K] - heat capacity at temperature T2\n",
      "p1 = 1480.;  \t\t\t #[kg/m**3] - density at temperature T1\n",
      "p2 = 1590.;  \t\t\t #[kg/m**3] - density at temperature T2\n",
      "Tb = 349.90;  \t\t\t #[K] - normal boiling point\n",
      "pb = 1480.;  \t\t\t #[kg/m**3] - density at normal boiling point\n",
      "cpb = 0.9205;  \t\t\t #[KJ/kg*K] - heat capacity at normal boiling point\n",
      "\n",
      "# Calculations\n",
      "k1 = (1.105/(M**(1./2)))*(cp1/cpb)*((p1/pb)**(4./3))*(Tb/T1);\n",
      "k2 = (1.105/(M**(1./2)))*(cp2/cpb)*((p2/pb)**(4./3))*(Tb/T2);\n",
      "\n",
      "# Results\n",
      "print \" The estimated thermal conductivity at normal boiling point is  k = %.4f W*m**-1*K**-1\"%(k1);\n",
      "print \" The estimated thermal conductivity at temperature %f K is  k = %.4f W*m**-1*K**-1\"%(T2,k2);\n",
      "print \" The estimated value is 3.4 percent higher than the experimental value of 0.1029 W*m**-1*K**-1\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The estimated thermal conductivity at normal boiling point is  k = 0.0891 W*m**-1*K**-1\n",
        " The estimated thermal conductivity at temperature 293.150000 K is  k = 0.1064 W*m**-1*K**-1\n",
        " The estimated value is 3.4 percent higher than the experimental value of 0.1029 W*m**-1*K**-1\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 14.9 - Page No :743\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "# Variables\n",
      "T = 288.;       \t\t\t #[K] - temperature\n",
      "M1 = 60.09;  \t    \t\t #[kg/mole] - molecular weight of proponal\n",
      "M2 = 18.015;  \t\t    \t #[kg/mole] - molecular weight of water\n",
      "mu1 = 2.6*10**-3;  \t\t\t #[kg/m*sec] - viscosity of proponal\n",
      "mu2 = 1.14*10**-3;  \t\t #[kg/m*sec] - viscosity of water\n",
      "Vc = 14.8*10**-3;  \t\t\t #[m**3/kmol] - molar volume of carbon\n",
      "Vh = 3.7*10**-3;  \t\t\t #[m**3/kmol] - mlar volume of hydrogen\n",
      "Vo = 7.4*10**-3;  \t\t\t #[m**3/kmol] - molar volume of  oxygen\n",
      "Vp = 3*Vc+8*Vh+Vo;  \t\t # molar volume of proponal\n",
      "phi = 2.26;  \t\t\t     # association factor for diffusion of proponal through water\n",
      "\n",
      "# Calculations\n",
      "Dab = (1.17*10**-16*(T)*(phi*M2)**(1./2))/(mu2*(Vp**0.6));\n",
      "print \" The diffusion coefficient of proponal through water is  Dab = %.1e m**2/sec\"%(Dab);\n",
      "phi = 1.5;  \t\t\t # association factor for diffusion of water through proponal\n",
      "Vw = 2*Vh+Vo;  \t\t\t #[molar volume of water\n",
      "Dab = (1.17*10**-16*(T)*(phi*M1)**(1./2))/(mu1*(Vw**0.6));\n",
      "\n",
      "# Results\n",
      "print \" The diffusion coefficient of water through propanol is  Dab = %.1e m**2/sec\"%(Dab);\n",
      "\n",
      "# Answer may vary because of rounding error."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The diffusion coefficient of proponal through water is  Dab = 8.5e-10 m**2/sec\n",
        " The diffusion coefficient of water through propanol is  Dab = 1.5e-09 m**2/sec\n"
       ]
      }
     ],
     "prompt_number": 26
    }
   ],
   "metadata": {}
  }
 ]
}