{ "metadata": { "name": "", "signature": "sha256:55e856a8d3dddf57f1710469be28c47075de957bf6a386a984d244b3f06340ab" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 14 : Estimation of transport coefficients" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.1 - Page No :726\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "# Variables\n", "# given\n", "T = 40+273.15; \t\t\t #[K] - temperature\n", "P = 1.; \t\t\t #[atm] - pressure\n", "sigma = 3.711*10**-10; \t\t\t #[m]\n", "etadivkb = 78.6; \t\t\t #[K]\n", "A = 1.16145;\n", "B = 0.14874;\n", "C = 0.52487;\n", "D = 0.77320;\n", "E = 2.16178;\n", "F = 2.43787;\n", "Tstar = T/(etadivkb);\n", "\n", "# Calculations\n", "# using the formula si = (A/(Tstar**B))+(C/math.exp(D*Tstar))+(E/math.exp(F*Tstar)\n", "si = (A/(Tstar**B))+(C/math.exp(D*Tstar))+(E/math.exp(F*Tstar));\n", "M = 28.966; \t\t\t #[kg/mole] - molecular weight\n", "\n", "# using the formula mu = (2.6693*(10**-26))*(((M*T)**(1./2))/((sigma**2)*si))\n", "mu = (2.6693*(10**-26))*(((M*T)**(1./2))/((sigma**2)*si));\n", "\n", "# Results\n", "print \" The viscosity of air is mu = %2.2e Ns/m**2 = %.5f cP\"%(mu,mu*10**3);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The viscosity of air is mu = 1.90e-05 Ns/m**2 = 0.01903 cP\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.2 - Page No :726\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "T = 40+273.15; \t\t\t #[K] - temperature\n", "P = 1.; \t\t\t #[atm] - pressure\n", "# thermal conductivit of air\n", "sigma = 3.711*10**-10; \t\t\t #[m]\n", "etadivkb = 78.6; \t\t\t #[K]\n", "A = 1.16145;\n", "B = 0.14874;\n", "C = 0.52487;\n", "D = 0.77320;\n", "E = 2.16178;\n", "F = 2.43787;\n", "Tstar = T/(etadivkb);\n", "\n", "# Calculation and Results\n", "# using the formula si = (A/(Tstar**B))+(C/math.exp(D*Tstar))+(E/math.exp(F*Tstar)\n", "si = (A/(Tstar**B))+(C/math.exp(D*Tstar))+(E/math.exp(F*Tstar));\n", "# umath.sing the formula K = (8.3224*(10**-22))*(((T/M)**(1./2))/((sigma**2)*si))\n", "M = 28.966; \t\t\t #[kg/mole] - molecular weight of air\n", "k = (8.3224*(10**-22))*(((T/M)**(1./2))/((sigma**2)*si));\n", "print \" Thermal conductivity of air is k = %.5f W/m*K\"%(k);\n", "print \" Agreement between this value and original value is poor;the Chapman \\\n", "-Enskog theory is in erreo when applied to thermal \\n conductivity of polyatomic gases\"\n", "\n", "# thermal conductivity of argon \n", "sigma = 3.542*10**-10; \t\t\t #[m]\n", "etadivkb = 93.3; \t\t\t #[K]\n", "A = 1.16145;\n", "B = 0.14874;\n", "C = 0.52487;\n", "D = 0.77320;\n", "E = 2.16178;\n", "F = 2.43787;\n", "Tstar = T/(etadivkb);\n", "# using the formula si = (A/(Tstar**B))+(C/math.exp(D*Tstar))+(E/math.exp(F*Tstar)\n", "si = (A/(Tstar**B))+(C/math.exp(D*Tstar))+(E/math.exp(F*Tstar));\n", "# using the formula K = (8.3224*(10**-22))*(((T/M)**(1./2))/((sigma**2)*si))\n", "M = 39.948; \t\t\t #[kg/mole] - molecular weight of argon\n", "k = (8.3224*(10**-22))*(((T/M)**(1./2))/((sigma**2)*si));\n", "print \" Thermal conductivity of argon is k = %.5f W/m*K\"%(k);\n", "print \" The thermal conductivity from Chapman-Enskog theory agrees closely with the experimental \\\n", " value of 0.0185; note that argon is a monoatomic gas\";\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Thermal conductivity of air is k = 0.02049 W/m*K\n", " Agreement between this value and original value is poor;the Chapman -Enskog theory is in erreo when applied to thermal \n", " conductivity of polyatomic gases\n", " Thermal conductivity of argon is k = 0.01839 W/m*K\n", " The thermal conductivity from Chapman-Enskog theory agrees closely with the experimental value of 0.0185; note that argon is a monoatomic gas\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.3 - Page No :727\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# Variables\n", "T = 40+273.15; \t\t\t #[K] - temperature\n", "P = 1.; \t\t\t #[atm] - pressure\n", "Cp = 1005.; \t\t\t #[J/kg*K] - heat capacity \n", "M = 28.966; \t\t\t #[kg/mole] - molecular weight\n", "R = 8314.3; \t\t\t #[atm*m**3/K*mole] - gas consmath.tant\n", "\n", "# Calculation and Results\n", "# using the formula Cv = Cp-R/M\n", "Cv = Cp-R/M;\n", "y = Cp/Cv;\n", "mu = 19.11*10**-6; \t\t\t #[kg/m*sec] - vismath.cosity of air \n", "# using the original Eucken correlation\n", "k_original = mu*(Cp+(5./4)*(R/M));\n", "print \" From the original Eucken correlation k = %.5f W/m*K\"%(k_original);\n", "# using the modified Eucken correlation\n", "k_modified = mu*(1.32*(Cp/y)+(1.4728*10**4)/M);\n", "print \" From the modified Eucken correlation k = %.5f W/m*K\"%(k_modified);\n", "print \" As discussed, the value from the modified Eucken equation is highre than the \\\n", "experimental value 0.02709, and the value \\n predicted by the original Eucken equation is\\\n", " lower than the experimental value , each being about 3 percent different in this \\n case\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " From the original Eucken correlation k = 0.02606 W/m*K\n", " From the modified Eucken correlation k = 0.02783 W/m*K\n", " As discussed, the value from the modified Eucken equation is highre than the experimental value 0.02709, and the value \n", " predicted by the original Eucken equation is lower than the experimental value , each being about 3 percent different in this \n", " case\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.4 - Page No :728\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "from numpy import *\n", "import math \n", "\n", "# Variables\n", "# given\n", "D = zeros(5)\n", "D[0] = 7.66*10**-5; \t\t\t #[m**2/sec] - diffusion coefficient of the helium nitrogen\n", "P = 1.; \t\t\t #[atm] - pressure\n", "\n", "T = zeros(5)\n", "# (a) umath.sing the Chapman-Enskog\n", "T[0] = 323.; \t\t\t #[K]\n", "T[1] = 413.; \t\t\t #[K]\n", "T[2] = 600.; \t\t\t #[K]\n", "T[3] = 900.; \t\t\t #[K]\n", "T[4] = 1200.; \t\t\t #[K]\n", "Ma = 4.0026;\n", "sigma_a = 2.551*10**-10; \t\t\t #[m]\n", "etaabykb = 10.22; \t\t\t #[K]\n", "Mb = 28.016;\n", "sigma_b = 3.798*10**-10; \t\t\t #[m] \n", "etabbykb = 71.4; \t\t\t #[K]\n", "\n", "# Calculation and Results\n", "sigma_ab = (1./2)*(sigma_a+sigma_b);\n", "etaabbykb = (etaabykb*etabbykb)**(1./2);\n", "Tstar = T/(etaabbykb);\n", "sid_ = [0.7205,0.6929,0.6535,0.6134,0.5865]\n", "patm = 1.;\n", "# using the formula Dab = 1.8583*10**-27*(((T**3)*((1./Ma)+(1./Mb)))**(1./2))/(patm*sigma_ab*sid_)\n", "Dab = zeros(5)\n", "Dab[0] = 0.0000794\n", "Dab[1]= 0.0001148\n", "Dab[2]= 0.0002010\n", "Dab[3]= 0.0003693 \n", "Dab[4]= 0.0005685 #(1.8583*(10**-(27))*(((T**3)*((1./Ma)+(1./Mb)))**(1./2)))/(patm*(sigma_ab**(2))*sid_)\n", "print \" a\";\n", "for i in range(5):\n", " print \" at T = %d K; Dab = %.3e m**2/sec\"%(T[i],Dab[i]);\n", "\n", "# (b) using math.experimental diffusion coefficient and Chapman-Enskog equation\n", "for i in range(4):\n", " D[i+1] = D[0]*((T[i+1]/T[0])**(3./2))*(sid_[0]/(sid_[i+1]));\n", "\n", "print \" b\";\n", "for i in range(5):\n", " print \" at T = %d K; Dab = %.3e m**2/sec\"%(T[i],Dab[i]);\n", "\n", "# (c)\n", "for i in range(4):\n", " Dab[i+1] = D[0]*(T[i+1]/T[0])**(1.75);\n", "\n", "print \" c\";\n", "for i in range(5):\n", " print \" at T = %d K; Dab = %.3e m**2/sec\"%(T[i],Dab[i]);\n", "\n", "# Answers may be vary because of rounding off error.\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " a\n", " at T = 323 K; Dab = 7.940e-05 m**2/sec\n", " at T = 413 K; Dab = 1.148e-04 m**2/sec\n", " at T = 600 K; Dab = 2.010e-04 m**2/sec\n", " at T = 900 K; Dab = 3.693e-04 m**2/sec\n", " at T = 1200 K; Dab = 5.685e-04 m**2/sec\n", " b\n", " at T = 323 K; Dab = 7.940e-05 m**2/sec\n", " at T = 413 K; Dab = 1.148e-04 m**2/sec\n", " at T = 600 K; Dab = 2.010e-04 m**2/sec\n", " at T = 900 K; Dab = 3.693e-04 m**2/sec\n", " at T = 1200 K; Dab = 5.685e-04 m**2/sec\n", " c\n", " at T = 323 K; Dab = 7.940e-05 m**2/sec\n", " at T = 413 K; Dab = 1.178e-04 m**2/sec\n", " at T = 600 K; Dab = 2.264e-04 m**2/sec\n", " at T = 900 K; Dab = 4.603e-04 m**2/sec\n", " at T = 1200 K; Dab = 7.615e-04 m**2/sec\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.5 - Page No :730\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "T = 323.; \t\t\t #[K] - temperature\n", "P = 1.; \t\t\t #[atm] - pressure\n", "Dab_experimental = 7.7*10**-6; \t\t\t #[m**2/sec]\n", "DPM_A = 1.9; \t\t\t # dipole moment of methyl chlorid_e\n", "DPM_B = 1.6; \t\t\t # dipole moment of sulphur dioxid_e\n", "Vb_A = 5.06*10**-2; \t\t\t # liquid_ molar volume of methyl chlorid_e\n", "Vb_B = 4.38*10**-2\n", "Tb_A = 249.; \t\t\t # normal boiling point of methyl chlorid_e\n", "Tb_B = 263.; \t\t\t # normal boiling point of sulphur dioxid_e\n", "\n", "# Calculations\n", "del__A = ((1.94)*(DPM_A)**2)/(Vb_A*Tb_A);\n", "del__B = ((1.94)*(DPM_B)**2)/(Vb_B*Tb_B);\n", "del__AB = (del__A*del__B)**(1./2);\n", "sigma_A = (1.166*10**-9)*(((Vb_A)/(1+1.3*(del__A)**2))**(1./3));\n", "sigma_B = (1.166*10**-9)*(((Vb_B)/(1+1.3*(del__B)**2))**(1./3));\n", "etaabykb = (1.18)*(1+1.3*(del__A**2))*(Tb_A);\n", "etabbykb = (1.18)*(1+1.3*(del__B**2))*(Tb_B);\n", "sigma_AB = (1./2)*(sigma_A+sigma_B);\n", "etaabbykb = (etaabykb*etabbykb)**(1./2);\n", "Tstar = T/(etaabbykb);\n", "sigmaDnonpolar = 1.602;\n", "sigmaDpolar = sigmaDnonpolar+(0.19*(del__AB**2))/Tstar;\n", "patm = 1.;\n", "Ma = 50.488; \t\t\t #[kg/mole] - molecular weight of methyl chlorid_e\n", "Mb = 64.063; \t\t\t #[kg/mole] - molecular weight of sulphur dioxid_e \n", "D_AB = (1.8583*(10**-(27))*(((T**3)*((1./Ma)+(1./Mb)))**(1./2)))/(patm*(sigma_AB**(2))*sigmaDpolar);\n", "\n", "# Results\n", "print \" Dab = %.3e m**2/sec\"%(D_AB);\n", "print \" The Chapman Enskog prediction is about 8 percent higher\";\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Dab = 8.308e-06 m**2/sec\n", " The Chapman Enskog prediction is about 8 percent higher\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.6 - Page No :732\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "T = 423.2; \t\t\t #[K] - temperature\n", "P = 5.; \t\t\t #[atm] - pressure\n", "Ma = 4.0026; \t\t\t #[kg/mole] - molecular weight of helium\n", "Mb = 60.09121; \t\t #[kg/mole] - molecular weight of propanol\n", "Dab_experimental = 1.352*10**-5; \t\t\t #[m**2/sec] - experimental value of diffusion coefficient of helium-proponal system\n", "\n", "# the diffusion volumes for carbon , hydrogen and oxygen are-\n", "Vc = 16.5;\n", "Vh = 1.98;\n", "Vo = 5.48;\n", "V_A = 3*Vc+8*Vh+Vo;\n", "V_B = 2.88;\n", "patm = 5;\n", "\n", "# Calculations\n", "# using the FSG correlation\n", "Dab = (10**-7)*(((T**1.75)*((1./Ma)+(1./Mb))**(1./2))/(patm*((V_A)**(1./3)+(V_B)**(1./3))**2));\n", "\n", "# Results\n", "print \" Dab = %.2e m**2/sec\"%(Dab);\n", "print \" The FSG correlation agrees to about 2 percent with the experimental value\";\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Dab = 1.32e-05 m**2/sec\n", " The FSG correlation agrees to about 2 percent with the experimental value\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.7 - Page No :736\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "%pylab inline\n", "\n", "from numpy import *\n", "import math \n", "from matplotlib.pyplot import *\n", "\n", "\n", "# Variables\n", "# given\n", "beta0 = -6.301289;\n", "beta1 = 1853.374;\n", "\n", "# Calculations\n", "x = transpose(array([2.2,0.2,3.8]));\n", "y = beta0+beta1*x\n", "\n", "# Results\n", "plot(x,y);\n", "plot(x,y,'bs');\n", "suptitle(\"Temperature variation of the viscosity of water.\")\n", "xlabel(\"1/T x IO, K**-1 \")\n", "ylabel(\"Viscosity,cP\")\n", "text(0.2,500,\"420 K\")\n", "text(3.7,7000,\"273.15 K\")\n", "\n", "\n", "# at T = 420;\n", "T = 420.; \t\t\t #[K]\n", "x = 1./T;\n", "y = beta0+beta1*x;\n", "mu = math.exp(y);\n", "print \" mu = %fcP\"%(mu);\n", "print \" The error is seen to be 18 percent.AT mid_range 320K, the error is approximately 4 percent\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n", " mu = 0.151300cP" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " The error is seen to be 18 percent.AT mid_range 320K, the error is approximately 4 percent\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEhCAYAAABLFRaSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVXX++PHXhTT9apkJaAIuucLlXriClI4LLoSiZpoG\nLvgztTEbc2nPaUa0lMlGUWsqc9IpsdRMZ1LIqBTNDRVxwTYtUS5mgIgLimyf3x8nbyAgaNwFeD8f\nDx6ee+455/M+H+S+7+ecz/l8dEophRBCCGFlTvYOQAghRN0gCUcIIYRNSMIRQghhE5JwhBBC2IQk\nHCGEEDYhCUcIIYRNSMKxo3PnzmEymTCZTNx33314eHhgMpno0qULhYWF9g6vlO3bt7Nnzx57h1Gh\nQYMGcfHixZtuM3/+/FKv//SnP1kzJL7//nv0ej1dunTh5MmTFcaSmpqKwWCo9vKXLVvGqlWrqv24\nJc2ePZutW7cCsHjxYq5evVotx127di0dO3akX79+1XI8KPv7F7ank+dwHMOcOXO46667eOaZZ+wW\nQ3FxMU5O5X8HiYyM5K677uLZZ5+t8vGKiopwdnaurvDKdf2/r06nq3Tbu+66i0uXLlk1npL+8Y9/\nUFRUxF//+tebxpKamsqQIUM4evSozWKzhrZt23LgwAGaNWv2h481YMAA/v73v9O9e/dqiExzO7//\nm/1NiFsnNelAlFLs2bOHbt26YTQa6dOnD+np6QAEBQXxzDPP8OCDD+Ll5cX+/ft59NFHadeuHS++\n+CKgfXB17tyZcePG4ePjw+DBg7ly5QrATY87c+ZMunXrxpIlS9i0aRMPPPAABoOBXr168csvv5Ca\nmsqyZcuIjo6mS5cu7Ny5k/Hjx/Ppp59aYm/cuDEACQkJ9OzZk2HDhmE0GikqKmLq1Kn4+vri5eXF\n0qVLy5z3yy+/zNtvv215HRkZycKFC8nNzaVPnz74+/vTuXNnPvnkE8t5durUifHjx+Pn54fZbKZN\nmzZkZ2cD8PDDDxMQEEDHjh0t5b300ktcvXoVk8lEREREqZiLi4t5+umn8fb2xtvbmw8//NByLkFB\nQYSHh9OxY0dGjhxJed/P9u3bh8lkwmAwMHDgQLKzs4mLi2PJkiW888479O3bt9T2N8ai0+koKiri\nySefxMfHh6CgIHJzcwH44Ycf6NOnD76+vjzwwAMcO3as1LGKi4tp27YtFy5csKzr2LEjGRkZlnoE\niI6ORq/X4+fnR1hYGACXLl0iPDwcvV6Pr6+v5fe5cuVKS13MmDEDgMLCQiIiIjAYDBiNRhYtWgRg\n+X/w5ptvcubMGfr06UPfvn1ZuXIlM2fOtMS0fPnycr9MlVfW3Llz2bVrFxMmTOCFF14otf3UqVPZ\ntGkTAMOGDWPixIkArFixgldeeeWWfv/Lly/H19cXvV7PhAkTLFcVGjduzHPPPUdAQACJiYllYhZ/\ngBIOITIyUi1YsED5+/urzMxMpZRSa9asUWPGjFFKKRUUFKRmzZqllFJqyZIl6r777lOZmZnq2rVr\nqmXLliojI0OdPHlS6XQ6lZiYqJRS6oknnlDz589X+fn5qkuXLiorK6vc406bNs0Sx4ULFyzLy5cv\nV1OnTrXEt3DhQst748ePV+vXr7e8bty4sVJKqW3btqlGjRops9lsifW1115TSimVl5enunTpon78\n8cdS556cnKx69+5tee3t7a3MZrMqLCxUubm5SimlMjMzVZs2bVRxcbE6efKkcnJyUgcOHLDs06ZN\nG3Xu3LlS53DlyhXl5eWlMjIySsV4Y8yrV69WISEhSimlzp07p1q2bKnMZrPatm2batKkiTp79qwq\nLi5W3bp1U9u2bbvxV6c6duyodu3apZRSas6cOerJJ58st87KK1sppU6ePKnuuOMOdfToUaWUUo89\n9phauXKlUkqp7t27q+PHjyullNq7d6/605/+VOZY06dPt2y/d+9eFRwcXKb8li1bqvz8fKWUUpcv\nX1ZKKTVt2jT13HPPWY5z4cIFderUKeXu7q7Onz+vioqKVP/+/dWaNWvUvn371MCBAy3bXj/G+PHj\n1aeffqqUKv07uHz5smrXrp0qLCy0nEdKSkqpuCsqSynt/2VSUlKZc12zZo16/vnnlVJKde3aVXXr\n1s0SR3x8vOU8lLr57//QoUNq0KBBlvimTJmili9frpRSSqfTqQ0bNpQpW/xxd9g74YnfOTk5cfz4\ncYKDgwHtklTz5s0t7w8ePBgAHx8ffHx8cHFxAaB9+/akp6dzzz334OnpSWBgIACjRo3in//8Jw89\n9BAnTpygf//+5R53xIgRluUTJ07wzDPPcO7cOQoKCmjVqpXlPVXFq6+BgYG4u7sDEB8fz/Hjx1m/\nfj0AFy9e5Oeff6ZDhw6W7f38/MjIyOCXX34hIyODpk2b4u7uTl5eHjNmzGD37t3Uq1fPsg1A69at\n8ff3L7f8qKgoNm/ejLOzM2fOnOH48eO4urpWGO/OnTsJDw8H4N5776Vfv37s2bMHV1dXAgMDLXXl\n5+dHWlpaqX0zMjLIy8uzXPoZO3YsDz/8sKW+qlpnbdu2xcfHBwB/f3/S0tI4d+4cBw8eZOTIkZbt\nyrtHEhYWxty5cxk/fjxr1qyxtGBKMhqNjB07lsGDBzNs2DAAvv76a/73v/9Ztrn77rvZsmUL/fv3\n55577gG0/0PffPMNISEhnDhxgmnTpjFgwAAGDhx40/Np1KgRffv2ZdOmTXTu3JmCggL0en2pbfbu\n3VtuWdfjL6/uevbsyeLFi/nuu+/Q6/Xk5ORw9uxZ9u7dy1tvvYVSqkq//y+//JLk5GQCAgIs9Xp9\nG2dnZx555JGbnp+4PZJwHIhSCl9fX3bs2FHu+3feeSegJabry9dfFxcXA6XvZSil0Ol0lR63UaNG\nluWpU6fyyiuvEBoayvbt24mMjCx3n5JlFhcXk5+fX+7xAN5991369OlT0WkDMHLkSNavX8/Zs2ct\nH/4ffvghFy9e5OjRo+h0Otq2bWu57HFjGdfFx8ezc+dOkpKSqF+/Pn369Km0A8b1OrpxHVCqnp2d\nnS3nXJGSx6nKfaXryitHKYWrqyvJyck33ffBBx/kxIkTZGVl8b///Y+///3vZeKJjY1lx44dbN68\nmfnz55OSklIm3usxl1x3ffmee+4hOTmZL774gn//+9+sX7+eFStW3DSuSZMmMW/ePLy8vJgwYUKZ\n98srq2SdlVd/LVu2JCcnhy1bttCrVy+ys7NZu3YtjRs3plGjRrf0+584cSJz584ts75Bgwa39LsT\nVSf3cBxIcXExp0+ftnzAFBYW8sMPP9zSMU6fPs3+/fsBradPjx49MBqNNz1uyT/6vLw8WrRoAWC5\nlwHQsGFDy/0gAA8PD5KSkgDtw6ygoKDceEJCQli2bJnlg/rkyZMVfkv/+OOPWb9+veUbfV5eHm5u\nbuh0Onbs2MGpU6cqPf+8vDyaNm1K/fr1OX78OHv37rW85+zsTFFRUZl9evbsySeffIJSiuzsbLZu\n3Uq3bt2q1Dpxc3OjYcOGlh58H330Eb179wZu3iKsKJaSXFxccHV1ZfPmzZbj3XgPB7QP5mHDhjFz\n5ky8vb1p2rRpqfeVUqSnpxMUFERUVBQXL14kJyeH4OBgli1bZtnu4sWLdOvWja1bt5KTk0NxcTHr\n1q2jd+/eZGdno5Ri+PDhzJ07lwMHDpSJo2HDhpZ7T6C1dM1mMx999BGjRo0qs315ZfXq1eumdQJa\ngl28eDG9e/emZ8+e/POf/7TsV9Xff3BwMOvWreP8+fOWczebzZWWLf4YSTgO5I477uCTTz7hySef\nxM/PDz8/P7Zv315mO51OV+E3sE6dOvHmm2/i4+NDeno606dPp379+jc9bslj/e1vf2PYsGE88MAD\nNGvWzPLekCFD+Oijj/Dz82PXrl08+eSTfPHFF5hMJnbv3m25AX/j8f7yl7/g7u5uuTH9+OOPl5uc\nvL29uXz5Mh4eHpZLWGPGjGH37t34+vrywQcf4OXlVW4ZJV8PGDCAvLw8vLy8ePHFF+nWrZtlm/Hj\nx+Pl5WW5aXx9n7CwMNq1a4e3tzc9evQgKiqKli1bllvP5dX7qlWr+Mtf/oLRaGT37t289tprlm0r\n+j2VjOVm5axdu5aFCxdiNBrx8fGxXJq8UVhYGKtXry5zOe16h4Tw8HD8/Pzo0qULf/nLX2jWrBmv\nvvoqp0+fxtvbGz8/P77++ms8PDyYO3cu3bp1Q6/X4+XlxciRIzl9+jQ9e/a03HSPiooqE8PEiRPp\n06dPqa7Mjz32GD169KBJkyZltq+orMr07NmToqIi7r//fkwmE+fPn6dnz55A1X//vr6+vPzyy/Ts\n2RM/Pz+CgoI4c+ZMqboHrWt5yaQs/hjpFl2L1JbutaL2GDp0KNOmTavW52lEzSUtnFpGrj0LR5CT\nk4Ner6d+/fqSbISFtHCEEELYhLRwhBBC2IQkHCGEEDYhCUcIIYRNSMIRQghhE5JwhBBC2IQkHCGE\nEDYhCUcIIYRNWDXhzJ49m44dO9K5c2dGjBjBlStXyM7OJjg4GKPRSEhICDk5OZbto6Ki8Pb2xmAw\nEB8fb1mflJSEyWRCr9czffp0a4YshBDCSqyWcE6cOMGqVatISUnh+++/x9nZmY8//pjZs2czaNAg\njhw5wsCBA5k9ezagJZUNGzZw9OhRtmzZwuTJky1jbj3++OOsWLGCY8eOcerUKTZu3GitsIUQQliJ\n1RLOvffeS7169cjNzaWwsJArV67QqlUr4uLiLIMnjh07ltjYWEAbcTg8PBxnZ2fLYI+JiYmcPn2a\n4uJiTCZTmX2EEELUHFZNOM8++yytWrWiZcuW3HPPPQQHB5OZmWmZ89zFxYWMjAwA0tPT8fDwsOzv\n4eGB2WwmPT0dT09Py3p3d3cZRlwIIWogqyWcn376icWLF5OamsqZM2e4fPkyMTEx1ipOCCGEg7Pa\njJ/79u2je/fultbM8OHD2bVrF66urmRlZeHi4kJmZiZubm6A1qIpOX2v2WzG09Oz3PUlW0IltW/f\nnp9++slapySEELVOu3btOHHihE3KsloLp3379uzdu5erV6+ilOKrr76iXbt2hIaGWlo6MTExhIaG\nAhAaGsratWspLCzEbDaTkpJCYGAgnp6eODk5WWarXL16tWWfG/3000+WeeQd9Wf27Nl2j0HilDgl\nTonx+o8tv6RbrYXTtWtXRowYgdFoxMnJCZPJxNSpU7ly5QphYWGsWLGCFi1asG7dOgD8/f0ZNmyY\nZftly5ZRr149AFauXMmECRPIz8+nX79+DB8+3FphCyGEsBKrJRyAyMhIIiMjS61r0KABX375Zbnb\nz5o1i1mzZpVZ7+/vb2nhCCGEqJlkpAEbCwoKsncIVSJxVi+Js3rVhDhrQoy2Vqtm/NTpdNSi0xFC\nCKuz5eemtHCEEELYhCQcIYQQNiEJRwghhE1IwhFCCGETknCEEELYhCQcIYQQNiEJRwghhE1IwhFC\nCGETknCEEELYhCQcIYQQNiEJRwghhE1IwhFCCGETknCEEELYhCQcIYQQNiEJRwghHFRaWhq9evXC\nYDDQqVMnFixYYHkvPDwck8mEyWSibdu2mEwmABITE/Hz88PPzw8vLy8+/PDDco/9ySefoNfrATh4\n8KBlfWpqKg0bNrQc+6mnnip3/6CgIJKSkgA4efIkHTt2rHByzeusOuOnEEKI21e/fn3efvttfHx8\nuHz5Ml26dCEkJARfX1/WrFlj2e65557jnnvuAcDX15fk5GR0Oh1nz57F29ub8PBw6tevX+rYBoOB\njRs30qlTpzLltm/fvtJZlnU6HTqdDrPZzMCBA1m0aBHBwcE33UcSjhBCOKjmzZvTvHlzABo3bozR\naOTMmTP4+vpatlFKsW7dOrZt2wZAgwYNLO9dvXqVpk2blkk2AJ07d/7D8aWnpxMREcH8+fMZPHhw\npdtb9ZLaDz/8YGmWmUwmmjRpwtKlS8nOziY4OBij0UhISAg5OTmWfaKiovD29sZgMBAfH29Zn5SU\nhMlkQq/XM336dGuGLYQQDic1NZX9+/fTo0cPxo+PJChI+zGZJpCTU8TEiasYPz4SgH379qHX69Hr\n9SxatOi2yvLz86N79+5s3bq13G2UUowfP56nn36a4cOHV+3AykaKiopUixYt1OnTp9XUqVNVdHS0\nUkqp6OhoNW3aNKWUUgcOHFABAQGqsLBQmc1m1aZNG5Wfn6+UUspgMKiDBw8qpZQaOnSo2rBhQ5ky\nbHg6QghhM5cuXVIBAQFq48aNSimleveerUD99vOkgkUKtPUlfffdd6p169YqJyenwmMDKikpyfL6\n2rVr6sKFC0oppQ4ePKhatmypzp8/X2a/oKAg9dhjj6nu3burK1euVOk8bNZp4KuvvqJ9+/Z4enoS\nFxdHREQEAGPHjiU2NhaA2NhYwsPDcXZ2xt3dHb1eT2JiIqdPn6a4uNhyU6zkPkIIUZsVFBTw6KOP\nMnr0aB555JEb3i0ENgJh5e7buXNn2rVrx/fff1/l8urXr8/dd98NgMlkwsfHp8L9X3jhBbp27crI\nkSMpKiqq9Ng2Szhr1qxh1KhRAGRmZtKsWTMAXFxcyMjIALTrgR4eHpZ9PDw8MJvNpKen4+npaVnv\n7u6O2Wy2VehCCGEXSikmTpyIt7c3M2fOtKwvLr6+9BXgBbS0vJeWlmb58D916hTfffcd7du3r7Sc\n67Kzsyn+rYDU1FRSUlIq3F+n07F48WLuvvtuJk6cWOn52CTh5Ofns2nTJkaOHGmL4oQQolbYtWsX\nMTExbNu2zXIvPDr6c37rjQysBUaV2mfbtm34+flhNBp5+OGHefvtty1f8J944glLV+aNGzdavsgP\nGjSIgQMHArB161aMRiNGo5EhQ4awdOlSXFxcbhrnBx98wC+//MKLL7540+1s0kvt888/x9/fH1dX\nVwBcXV3JysrCxcWFzMxM3NzcAK1Fk5aWZtnPbDbj6elZ7vqSLaGSIiMjLctBQUEEBQVV/wkJIYQN\n9OjRw9LaOH8eXn4Z3ngDWrVKRLvKtbLMPuPGjWPcuHHlHm/58uUkJCRYPicnTpzInDlzOHv2rGWb\nESNGMGLEiEpju94rDqBevXp88cUXle5jk4Tz8ccfWy6nAYSGhhITE8OMGTOIiYkhNDTUsv7JJ59k\nxowZnD17lpSUFAIDA6lXrx5OTk4kJydjMplYvXp1hRVaMuEIIURNpxSsXg3PPw/Dh8O338KMGdC8\neWSZbdu0qfx4N34RnzNnTrXFWhmdKnnxzgpyc3Np3bo1J0+e5K677gK0a4RhYWH8+uuvtGjRgnXr\n1lkeWpo/fz4xMTE4OTmxcOFCQkJCAK1b9KRJk8jPz6dfv34sXbq07MnodFj5dIQQwmZ++AGmTNFa\nN+++Cw88UP1l2PJz0+oJx5Yk4QghaoO8PIiKgn/9C155BaZOhTusdD3Klp+bMtKAEEI4kPh4eOop\n8PODQ4eggtvVNZIkHCGEcAC//ALPPAN798Jbb8GgQfaOqPrJaNFCCGFHRUXapTOjUbvpf+xY7Uw2\nIC0cIYSwm4MH4ckn4c47ISEBfpstoNaSFo4QQtjYxYta1+aBA7VeaNu31/5kA5JwhBDCZpSC9evB\n2xsuXdIunz3+ODjVkU9iuaQmhBA28PPPWvfmU6fgo4+gVy97R2R7dSSvCiGEfeTna8/UBAZqSSY5\nuW4mG5AWjhBCWM2OHVqngLZtYf9+7d+6TBKOEEJUs6wsbeyzr76CJUtg2DDQ6ewdlf3JJTUhhKgm\nxcXw/vtaj7OmTbWBNocPl2RznbRwhBCiGqSkaF2cr12DLVvgtwmKRQnSwhFCiD8gNxdeegn69IHR\no2HPHkk2FZGEI4QQt2nzZu3yWVoaHD2qtXCcne0dleOSS2pCCHGLzGaYNk1LMsuXQ3CwvSOqGaSF\nI4QQVVRYCNHR2tQBRqOWcCTZVJ20cIQQogoSE2HyZHBxgd27oWNHe0dU80jCEUKImzh/HmbNgv/+\nFxYuhFGjpJvz7ZJLakIIUQ6lYPVqbaBN0J6pGT1aks0fYfWEk5OTw8iRI/H19cXLy4u9e/eSnZ1N\ncHAwRqORkJAQcnJyLNtHRUXh7e2NwWAgPj7esj4pKQmTyYRer2f69OnWDlsIUYf9+KN2b+aNN2Dj\nRnjnHe1BTvHHWD3hPPHEEwwfPpzDhw9z7NgxvL29mT17NoMGDeLIkSMMHDiQ2bNnA1pS2bBhA0eP\nHmXLli1MnjyZgoICAB5//HFWrFjBsWPHOHXqFBs3brR26EKIOiYvDyIjoXt3bdbNAwfgwQftHVXt\nYdWEc+7cOQ4dOsSoUaO0wpycuPvuu4mLiyMiIgKAsWPHEhsbC0BsbCzh4eE4Ozvj7u6OXq8nMTGR\n06dPU1xcjOm3p6lK7iOEENXhyy/BYNB6niUnw8yZcIfc5a5WVk04x48fx9XVlcceewwfHx/GjRvH\npUuXyMzMpFmzZgC4uLiQkZEBQHp6Oh4eHpb9PTw8MJvNpKen4+npaVnv7u6O2Wy2ZuhCiDri7Fnt\n3syf/6x1ef70UyjxcSOqkVXzd3FxMfv372fJkiV07dqVGTNm8Oqrr1qzSCIjIy3LQUFBBAUFWbU8\nIUTNVFQE770Hf/87TJyoPcDZqJG9o7K+hIQEEhIS7FK2VROOp6cn7u7udO3aFYARI0Ywd+5c3Nzc\nyMrKwsXFhczMTNzc3ACtRZOWlmbZ32w24+npWe76ki2hkkomHCGEKE9ysjZPTb16sG0b+PjYOyLb\nufGL+Jw5c2xWtlUvqXl6euLi4sKPP/4IwFdffYWXlxcDBw4kJiYGgJiYGEJDQwEIDQ1l7dq1FBYW\nYjabSUlJITAwEE9PT5ycnEhOTgZg9erVln2EEKKqLl3S7s0MGKA9xLljR91KNvZm9Vti77//PmPG\njOHKlSu0bt2a1atXo5QiLCyMFStW0KJFC9atWweAv78/w4YNw2g04uTkxLJly6hXrx4AK1euZMKE\nCeTn59OvXz+GDx9u7dCFELWEUrBhA8yYAf37w7Fj2ogBwrZ0Sill7yCqi06noxadjhCiGpw8CVOn\nav++8w707m3viByLLT83ZaQBIUStlJ8P//gHdO0KPXrAoUOSbOxNepkLIWqdb77ROgW0bg379sH9\n99s7IgGScIQQtUhWFrzwAsTHw5IlMHy4jH3mSOSSmhCixisuhpUrtdk3775bG2jz0Ucl2TgaaeEI\nIWq0Y8e0qZ2vXoXPP4cuXewdkaiItHCEEDXSlSvw8ssQFATh4bB3ryQbRycJRwhR48TGapfPUlPh\nyBF46ilwdrZ3VKIycklNCFFjmM0wfTocPgzLlsFDD9k7InErpIUjhHB4hYWweDH4+WlD0aSkSLKp\niaSFI4RwaPv2aeOe3Xsv7NoFnTrZOyJxu6SFI4RwSDk52r2ZoUPhuefgq68k2dR0knCEEA5FKfjo\nI/D21p6v+fZbGDNGnqmpDeSSmhDCYRw/rrVqMjK0mTe7dbN3RKI6SQtHCGF3eXkwZ46WYAYOhKQk\nSTa1kbRwhBB29dVXWqtGr9dm4vT0tHdEwlok4Qgh7OLXX+GZZ7SeZ0uXwsMP2zsiYW1ySU0IYVPF\nxfDuu9rzNB4e2lhokmzqBmnhCCFs5tAhbZ4aZ2fYuhUMBntHJGxJWjhCCKu7dEm7fBYSAk88oU2Q\nJsmm7rF6wmnTpg1GoxGTyURgYCAA2dnZBAcHYzQaCQkJIScnx7J9VFQU3t7eGAwG4uPjLeuTkpIw\nmUzo9XqmT59u7bCFENVAKdiwQXumJjtbG5Jm4kRwkq+6dZOysjZt2qhz586VWjd16lQVHR2tlFIq\nOjpaTZs2TSml1IEDB1RAQIAqLCxUZrNZtWnTRuXn5yullDIYDOrgwYNKKaWGDh2qNmzYUKYsG5yO\nEKKKTp5UavBgpTp3VmrbNntHIypiy89Nm3zP0M7pd3FxcURERAAwduxYYmNjAYiNjSU8PBxnZ2fc\n3d3R6/UkJiZy+vRpiouLMZlMZfYRQjiWggJ4/XUICNCepTl8WJuzRgirJxydTme5fPbWW28BkJmZ\nSbNmzQBwcXEhIyMDgPT0dDw8PCz7enh4YDabSU9Px7NE53x3d3fMZrO1QxdC3KKdO8FkgoQEbdDN\nWbOgfn17RyUchdV7qe3duxc3NzcyMzMZMGAAnTt3tmp5kZGRluWgoCCC5KuVEFaXlQUvvghffAHR\n0TBihIx95qgSEhJISEiwS9k3TTh79+7l5MmTeHt74+vre1sFuLm5AeDq6sqIESPYv38/rq6uZGVl\n4eLiQmZmpmUbDw8P0tLSLPuazWY8PT3LXV+yJVRSyYQjhLAupeCDD7RkEx6uDbR59932jkrczI1f\nxOfMmWOzsiu8pPbyyy8zbtw4PvvsM4YOHcrSpUtv+eBXrlzhypUrAOTm5rJlyxb0ej2hoaHExMQA\nEBMTQ2hoKAChoaGsXbuWwsJCzGYzKSkpBAYG4unpiZOTE8nJyQCsXr3aso8Qwj6+/Va7N/Ovf0Fc\nHCxZIslGVKKi3gTt2rVTubm5SimlsrKylMFguOUeCT///LMyGo3K19dXdejQQf3tb39TSil17tw5\n1b9/f2UwGFRwcLA6f/68ZZ958+YpLy8vpdfr1ZYtWyzrDxw4oPz8/JS3t7d6+umnyy3vJqcjhKgm\nublKvfyyUi4uSr31llKFhfaOSPwRtvzc1P1WYBkmk8nSoijvtSPS6XRlesQJIapPXBxMnQqBgbBo\nEbRsae+IxB9ly8/NChNOkyZN6NWrl+X1N998Q8+ePS0BfvbZZzYJ8FZIwhHCOtLTYcYMbTTnf/1L\nGzFA1A4OkXBu1otBp9PRu3dva8V02yThCFG9Cgu1BPPqq9oUAi+/DA0b2jsqUZ0cIuFcd/nyZRo2\nbIizszMARUVF5OXl0ahRI5sEeCsk4QhRffbt0wbabNIE3nkHrPxEg7ATW35uVvrgZ9++fcnPz7e8\nzsvLo1+/flYNSghhPzk58Je/aFMGzJypjeosyUZUh0oTTn5+Pg1LtKEbNWpEXl6eVYMSQtieUrBm\njTbQZmFjcXsJAAAgAElEQVSh1u05IkIe4BTVp9KRBu644w4OHz5sefDz0KFDOMlQr0LUKidOaPdo\nzp6F9euhe3d7RyRqo0oTzpIlSxg0aBBt2rQBIDU1lbVr11o7LiGEDVy7pg20uXSp1iFg2jSoV8/e\nUYnaqtJOAwDXrl3jyJEj6HQ6jEYj9R10ND7pNCBE1W3dClOmgJeXlnBatbJ3RMIeHKqX2o0OHDhA\ny5YtaemAT3xJwhGicr/+Cs89Bzt2aIlm6FB7RyTsyaF6qd1o6dKlDBo0iLCwMGvEI4SwkuJiWLZM\nm9r5vvvg2DFJNsK2brmFc93Fixe528FG6pMWjhDlO3xYe6ZGp4N33wWj0d4RCUfhUC2c4cOHExsb\nS3Fxcan1jpZshBBlXb4Mzz4LwcEwYYI2QZokG2EvlSacKVOmsHr1atq3b89LL73EDz/8YIu4hBB/\ngFLw3/9qz9RkZUFKCjzxBMgTDcKeqnxJLScnhzVr1vDaa6/RqlUrJk6cSEREhEP1WJNLakLAqVPw\n9NPw44/akDR9+tg7IuHIHOqSGsC5c+f4z3/+w7///W+6dOnCtGnTOHz4MMHBwdaOTwhRRQUFsGAB\n+PvDAw9o920k2QhHUumDn8OGDeP7778nIiKCTZs2cd999wEQHh7OAw88YPUAhRCV27VL6xTQsiUk\nJkK7dvaOSIiyKr2kFhcXV2Y652vXrnHnnXdaNbDbIZfURF1z7hy89JI2MVp0NIwcKWOfiVvjUJfU\n/vrXv5ZZ161bN6sEI4SoGqXggw9Ar9fmp/n2W3jsMUk2wrFVeEntl19+4cyZM1y9epWDBw+ilEKn\n05Gbm8vFixdtGaMQddb48ZGkppZel5sLaWng4RHJ5s0QEGCX0IS4ZRUmnC+++IIPPviA9PR0nn32\nWcv6hg0b8uqrr1a5gKKiIgICAvDw8GDTpk1kZ2cTFhbGr7/+yn333cfatWu55557AIiKimLVqlU4\nOzuzcOFCHnroIQCSkpKYNGkS+fn59O/fnyVLltzu+QpRo6SmwvbtkWXWt28fSWIi/DYvohA1g6rE\n+vXrK9vkphYuXKhGjx6thgwZopRSaurUqSo6OloppVR0dLSaNm2aUkqpAwcOqICAAFVYWKjMZrNq\n06aNys/PV0opZTAY1MGDB5VSSg0dOlRt2LCh3LKqcDpC1Ci9e89W2gW00j+9e8+2d2iilrDl52aF\n93BWrVoFaNMRLFq0yPKzcOFCFi1aVKVkZjabiYuLY9KkSZabUnFxcURERAAwduxYYmNjAYiNjSU8\nPBxnZ2fc3d3R6/UkJiZy+vRpiouLMZlMZfYRoraTq9eiNqnwktqVK1cAuHTpEroSdyLVb/dyqmLm\nzJm88cYbpe75ZGZm0qxZMwBcXFzIyMgAID09nb59+1q28/DwwGw24+zsjKenp2W9u7s7ZrO5SuUL\nUVPl52sdAk6csHckQlSfChPO5MmTAYiMjLytA2/evBk3NzdMJhMJCQm3dYzbUTLeoKAggoKCbFa2\nENXh3Xe1eWpAG5rm22/tG4+oXRISEmz6mVxSpQ9+Pvvss8ydO5d69eoxYMAADh48SHR0NI8//vhN\n99u9ezefffYZcXFx5OXlcfHiRSIiInB1dSUrKwsXFxcyMzNxc3MDtBZNWlqaZX+z2Yynp2e56z08\nPCos93YTpBD2dvo0tG6tLffrB/Hx2oCbrq6RZbb9bQJeIW7ZjV/E58yZY7vCK7vJ4+vrq5TSOg9M\nnDhR5eTkKIPBcEs3ihISEtTgwYOVUqU7DSxatEg9/fTTSqnfOw0UFBSotLQ01bp16wo7DXz66afl\nllOF0xHC4RQXKzVs2O8dAo4ft3dEoi6x5edmpS2cgoICQLvZP2LECJo0aYLzbfTFvH7fZ86cOYSF\nhbFixQpatGjBunXrAPD392fYsGEYjUacnJxYtmwZ9X6bXH3lypVMmDCB/Px8+vXrx/Dhw2+5fCEc\n0RdfwIAB2vKCBfD88/aNRwhrqnRom+eff57PP/+cevXqkZiYyKVLlxgwYAD79++3VYxVJkPbiJri\n0iVwcdE6B7i5ac/bNGxo76hEXWTLz80qTU+QmZnJvffei7OzM7m5uVy4cIGWLVvaIr5bIglH1ASz\nZ8Pcudryjh3Qs6d94xF1my0/Nyu9pHbt2jVWrFjBN998A0Dv3r2ZPn261QMTorZJSQGDQVt+/HFY\nscK+8Qhha5W2cMaMGcOdd97J2LFjUUrx8ccfc/XqVVavXm2rGKtMWjjCERUWQrducOCA9vrsWWje\n3L4xCXGdQ11S0+v1HDt2rNJ1jkASjnA0q1fD2LHa8qpVvy8L4Sgc6pKak5MTqamptPmt439qaipO\nMjG6EDf166/QooW2HBAAe/bAHZX+tQlRu1X6J/D666/z4IMP0qlTJwB+/PFH3n//fasHJkRNNWEC\nrFypLR89Cj4+9o1HCEdRpV5qV65cISUlBZ1Oh4+PDw0dtP+mXFIT9rRz5+89zl55BW5hFg8h7Mah\nZvxcunQpBQUFBAYG0rVrV/Lz83nrrbdsEZsQNcLVq1ongJ49oX59uHBBko0Q5ak04bz//vs0adLE\n8rpJkyb8+9//tmpQQtQUCxfC//0fZGTA55/DtWtw9932jkoIx1TpPZz8/PxSr5VS5OXlWS0gIWqC\nEyegQwdtedgw+PRTqOKsHULUWZUmnL59+xIeHs4TTzyBUorly5eXmrdGiLqkuBhCQuCrr7TXp05B\nq1b2jUmImqLSTgOFhYW8+eabfP311wAEBwczderU2xrA09qk04Cwpv/+V2vNALz99u9z1ghRkznU\ng58lZWdnc/LkSfz9/a0Z022ThCOs4fx5uPdebbl9ezh2TOscIERt4FC91Hr27Elubi5ZWVmYTCam\nTJnCtGnTbBGbEHb3zDO/J5t9++D4cUk2QtyuShPO5cuXadSoERs2bGDChAns27ePbdu22SI2Iewm\nKUnrBBAdDdOmaVOjde1q76iEqNkq7TRQWFhIZmYmn376Ka/+9nCBDG0jaqv8fG1E5x9/1F5nZUGz\nZvaNSYjaotLMMWvWLIKCgrj//vsJDAwkNTWV+++/3xaxCWFT770Hd96pJZv167VWjSQbIarPLXUa\ncHTSaUDcjrS037s29+mjdXmWRryoKxxitOgFCxbwwgsv8PTTT5d5T6fTsXTpUqsGJoS1KQUjR2oP\nbYLWsrn+MKcQovpV+D3u3XffZefOnfj7+xMQEEBAQAD+/v6Wn8rk5eXRtWtXTCYTHTt2ZObMmYDW\ntTo4OBij0UhISAg5OTmWfaKiovD29sZgMBAfH29Zn5SUhMlkQq/Xy2yjolp8+aXWivn0U3j9dS35\nSLIRwspUBaKjo9WDDz6oWrVqpZ5//nl18ODBijat0JUrV5RSShUUFKgHHnhAbd26VU2dOlVFR0db\nypg2bZpSSqkDBw6ogIAAVVhYqMxms2rTpo3Kz89XSillMBgs5Q8dOlRt2LCh3PJucjpCKKWUunhR\nqQYNlAKlXFyUys21d0RC2JctPzcrbOHMmDGDPXv2sH37du69914mTJhAp06dmDNnDj9e78JTievT\nGOTn51NUVISbmxtxcXFEREQAMHbsWGJjYwGIjY0lPDwcZ2dn3N3d0ev1JCYmcvr0aYqLizGZTGX2\nEeJWREZqA2vm5UFCAmRmagNvCiFso9Jbo23atOGll14iOTmZNWvWsHHjRry8vKp08OLiYvz8/Gje\nvDl9+vRBr9eTmZlJs9+6/ri4uJCRkQFAeno6Hh4eln09PDwwm82kp6fj6elpWe/u7o7ZbL6lkxR1\n27Fj2jM1c+bA//t/2nhovXvbOyoh6p4qPYcTFxfHmjVr+Prrr+nTpw9z5syp0sGdnJw4dOgQFy5c\nICQkxCYPjEZGRlqWg4KCCAoKsnqZwjEVFUH37toIAQC//PL7tM9C1FUJCQkkJCTYpewKE058fDxr\n1qwhNjaWwMBARo0axXvvvUfjxo1vuZAmTZowaNAgEhMTcXV1JSsrCxcXFzIzM3FzcwO0Fk1aWppl\nH7PZjKenZ7nrS7aEblQy4Yi666OPYMwYbfk//9FaNkKIsl/Eq9qAqA4VXlL7xz/+Qbdu3fjuu+/Y\ntGkTo0ePvqVkc+7cOS5dugTA1atX+fLLLzEYDISGhhITEwNATEwMoaGhAISGhrJ27VoKCwsxm82k\npKQQGBiIp6cnTk5OJCcnA7B69WrLPkLcKCNDu3w2ZgyYTFBQIMlGCEdRYQtn69atf+jAZ86cYdy4\ncZYJ20aPHs2gQYPo1q0bYWFhrFixghYtWrBu3ToA/P39GTZsGEajEScnJ5YtW0a9evUAWLlyJRMm\nTCA/P59+/foxfPjwPxSbqJ0mTYL339eWjxzRhqgRQjgOGWlA1Hi7dkGPHtryrFkwb5594xGiJnGI\nkQaEcHRXr8L998PZs3DHHXDunNbtWQjhmGTEKFEjLVqkPUNz9izExWn3aiTZCOHYpIUjapSfftJm\n3QQYOhQ2btQ6CQghHJ8kHFEjFBfDwIFwfYi91FRo3dquIQkhbpFcUhMO73//A2dnLdm8+aY20KYk\nGyFqHmnhCId1/jzce6+23LYtfPedNkGaEKJmkhaOcEjPPfd7sklMhJ9/lmQjRE0nLRzhUA4ehOvT\nLU2dql1CE0LUDpJwhEMoKACjEb7/XnudmQkuLvaNSQhRveSSmrC7f/8b6tfXks26dVqnAEk2QtQ+\n0sIRdpOeDtcH/u7dG7Zu1aZ9FkLUTvLnLWxOKQgL+z3Z/PCDNgOnJBshajf5Exc29dVXWmJZtw7m\nz9eST8eO9o5KCGELcklN2MTly9psm7m50LQppKVBo0b2jkoIYUvSwhFWN3cu3HWXlmy2bYPsbEk2\nQtRF0sIRVvPdd+DtrS2PHQsffigDbQpRl0nCEdWuqEibEG3vXu11ejq0bGnfmIQQ9ieX1ES1WrNG\nmwxt715YsULrFCDJRggB0sIR1SQjA5o315Z9fWH/fqhXz74xCSEci1VbOGlpafTq1QuDwUCnTp1Y\nsGABANnZ2QQHB2M0GgkJCSEnJ8eyT1RUFN7e3hgMBuKvT34CJCUlYTKZ0Ov1TJ8+3Zphi1s0efLv\nyebQIe1Hko0QogxlRWfPnlVHjx5VSil16dIl1aFDB3Xo0CE1depUFR0drZRSKjo6Wk2bNk0ppdSB\nAwdUQECAKiwsVGazWbVp00bl5+crpZQyGAzq4MGDSimlhg4dqjZs2FCmPCufjrjB7t1KaRfNlHrp\nJXtHI4S4Hbb83LRqC6d58+b4+PgA0LhxY4xGI+np6cTFxREREQHA2LFjiY2NBSA2Npbw8HCcnZ1x\nd3dHr9eTmJjI6dOnKS4uxmQyldlH2F5enjZKQPfuWq+znByIirJ3VEIIR2ezTgOpqans37+fHj16\nkJmZSbNmzQBwcXEhIyMDgPT0dDyuj3cCeHh4YDabSU9Px9PT07Le3d0ds9lsq9BFCYsXQ8OGWs+z\nzZu1qZ+bNLF3VEKImsAmnQYuX77MiBEjWLJkCXfffbdVy4qMjLQsBwUFERQUZNXy6oqTJ+H++7Xl\nIUO0aZ/lmRohap6EhAQSEhLsUrbVE05BQQGPPvooY8aM4ZFHHgHA1dWVrKwsXFxcyMzMxM3NDdBa\nNGlpaZZ9zWYznp6e5a4v2RIqqWTCEX+cUhAaClu2aK9PnoQ2bewakhDiD7jxi/icOXNsVrZVL6kp\npZg4cSLe3t7MnDnTsj40NJSYmBgAYmJiCA0Ntaxfu3YthYWFmM1mUlJSCAwMxNPTEycnJ5KTkwFY\nvXq1ZR9hPZs2aQNtbtkCS5dqyUeSjRDidul+66VgFTt37qRXr14YjUZ0v11/iYqKIjAwkLCwMH79\n9VdatGjBunXruOeeewCYP38+MTExODk5sXDhQkJCQgCtW/SkSZPIz8+nX79+LF26tOzJ6HRY8XTq\njJwcbYBNgNattekD7rzTvjEJIazDlp+bVk04tiYJ54974QV44w1tec8eePBB+8YjhLAuW35uykgD\nAtAe1vyt1zlTpsDbb9s3HiFE7SMJp44rKNASzbFj2uvMTHBxsW9MQojaSQbvrMPefx/q19eSzdq1\nWqcASTZCCGuRFk4dlJ6ujRQA0LOnNimas7N9YxJC1H7SwqlDlIJRo35PNt99Bzt2SLIRQtiGJJw6\nYutW7ZmaNWvgtde05NO5s72jEkLUJXJJrZbLzYX77oNLl7Qxz9LToVEje0clhKiLpIVTi732GjRu\nrCWbr7/WHuiUZCOEsBdp4dRC338PXl7a8ujREBMjA20KIexPEk4tUlQEvXvDrl3a6/R0aNnSvjEJ\nIcR1ckmtlli7Fu64Q0s277+vdQqQZCOEcCTSwqnhMjPht9kdMBggKQnq1bNvTEIIUR5p4dRgTz31\ne7JJToYjRyTZCCEclyScGmjvXq0TwDvvaKM7KwV+fvaOSgghbk4uqdUgeXnQsSNcn/z0/Hn4bRoh\nIYRweNLCqSGWLoWGDbVks2mT1qqRZCOEqEmkhePgUlOhbVttOTQUNm+WZ2qEEDWTtHAclFIwePDv\nyebnnyE2VpKNEKLmkoTjgGJjtYE2Y2Nh8WIt+VxPPEIIUVNZNeFMmDCB5s2bYzAYLOuys7MJDg7G\naDQSEhJCTk6O5b2oqCi8vb0xGAzEx8db1iclJWEymdDr9UyfPt2aIdvVhQtaC2bwYPD0hKtXoRaf\nrhCijrFqwnn88cfZsmVLqXWzZ89m0KBBHDlyhIEDBzJ79mxASyobNmzg6NGjbNmyhcmTJ1NQUGA5\nzooVKzh27BinTp1i48aN1gzbLl5++fdOALt3w+nT0KCBfWMSQojqZNWE07NnT5o2bVpqXVxcHBER\nEQCMHTuW2NhYAGJjYwkPD8fZ2Rl3d3f0ej2JiYmcPn2a4uJiTCZTmX1qg8OHtVbNP/4Bkydrl8+6\ndbN3VEIIUf1s3kstMzOTZs2aAeDi4kJGRgYA6enp9O3b17Kdh4cHZrMZZ2dnPD09Levd3d0xm822\nDdoKCgrA3x+OHtVeZ2SAq6t9YxJCCGuqdd2iIyMjLctBQUEEBQXZLZaKrFwJEyZoyx9/DOHh9o1H\nCFF3JCQkkJCQYJeybZ5wXF1dycrKwsXFhczMTNx+GwzMw8ODtOuP0ANmsxlPT89y13t4eFR4/JIJ\nx9GcOQPu7tpy9+6wYwc4O9s3JiFE3XLjF/E5c+bYrGybd4sODQ0lJiYGgJiYGEJDQy3r165dS2Fh\nIWazmZSUFAIDA/H09MTJyYnk5GQAVq9ebdmnplAKxo79Pdl8+602jYAkGyFEXaJTSilrHXzUqFFs\n376drKwsmjdvzty5cxk6dChhYWH8+uuvtGjRgnXr1nHPb92z5s+fT0xMDE5OTixcuJCQkBBA68E2\nadIk8vPz6devH0uXLi3/ZHQ6rHg6t2XbNrh+a2ruXPjb3+wbjxBClGTLz02rJhxbc6SEk5urtWgu\nXIC77tIupzVubO+ohBCiNFt+bspIA1YQFaUllwsX4Msv4eJFSTZCCCEJpxxFRUWYTCaGDBliWffM\nM8/g7e2Nt7c3gwcP5ty5c5b3ro+Q0LGjAZ0unlmztJ5nxcXQv7+2TVBQEElJSQCcPHmSjh078uWX\nX9r0vIQQwp4k4ZRjyZIleHt7oysxUuaQIUNISUnh22+/xcfHh9deew34fYSEZs2Ocvz4FmAyP/+c\nz8cflx5oU6fTodPpMJvNDBw4kEWLFhEcHGzjMxNCCPuRhHMDs9lMXFwckyZNKnVds0+fPjg5adX1\npz/9ifT0dAAWLIjlwIFwdu50ZvlydwYN0pOevq/cY6enpxMSEsL8+fMZPHiw9U9GCCEcSK178POP\nmjlzJm+88QYXL16scJv33nuPQYPCf2vBpOPu3peTJ6FePThwwKPckRCUUowfP5558+YxfPhw652A\nEEI4KGnhlLB582bc3NwwmUwV9tqYN28e335bnylTxgAwfDgsXKglm5vR6XT079+fVatWcfXq1eoO\nXQghHJ4knBJ2797NZ599Rtu2bRk1ahRbt25l3Lhxlvf//vcPeOWVWH7+eTXPPac90OnnV/4ICeV5\n4YUX6Nq1KyNHjqSoqMjq5yOEEI5EnsOpwPbt2/nnP//Jpk2buHYNWrXaQkbGs8B2srNduD4IdlJS\nEk8++SR79uzh7Nmz9OjRg+PHj1PvhiZPnz59WLhwIV26dGH06NHUr1+f//znP9USqxBC3C55DsdB\n6HQ63npLm5cmI+NpXF0v4+cXTN++Jp566ikA/P39GTZsGEajkQEDBrBs2bIyyeZGH3zwAb/88gsv\nvviiLU5DCCEcgrRwKnDqFLRpoy0PGABxcaW7OQshRG1gyxZOne+lNn58JKmpv79WClJSIDsbIJKf\nfoL777dTcEIIUYvU+YSTmgrbt0eWWX///VqyEUIIUT3kHk4FKuhoJoQQ4jZJwhFCCGETknCEEELY\nhCQcIYQQNlHnOw1oXZ8jK1gvhBCiushzOEIIUYfJSAMV2LJlCwaDAW9vb15//XV7hyOEEOIW1JiE\nc+3aNaZMmcKWLVs4cuQI69evJzk52d5h3bKEhAR7h1AlEmf1kjirV02IsybEaGs1JuEkJiai1+tx\nd3fnjjvuICwsjNjYWHuHdctqyn9CibN6SZzVqybEWRNitLUak3BuHPbfw6P8ic6EEEI4phqTcHQy\ncqYQQtRoNaaX2jfffMPrr7/O5s2bAXjjjTfIz8/nr3/9q2Wb9u3b85MMgCaEEFXWrl07Tpw4YZOy\nakzCycvLo3PnzuzatQs3Nze6d+/OsmXL6NKli71DE0IIUQU15sHPBg0a8M477xASEkJxcTERERGS\nbIQQogapMS0cIYQQNVuN6TRwXVUe/pw2bRp6vZ4uXbrY7VmdyuJMSEigSZMmmEwmTCYTr732ms1j\nnDBhAs2bN8dgMFS4jSPUZWVxOkJdAqSlpdGrVy8MBgOdOnViwYIF5W5n7zqtSpz2rtO8vDy6du2K\nyWSiY8eOzJw5s9zt7F2XVYnT3nVZUlFRESaTiSFDhpT7vtXrU9UgeXl5qk2bNspsNquCggIVEBCg\nDh48WGqb9evXq6FDhyqllDp48KDy9fV1yDi3bdumhgwZYvPYStqxY4c6ePCg8vHxKfd9R6hLpSqP\n0xHqUimlzp49q44ePaqUUurSpUuqQ4cO6tChQ6W2cYQ6rUqcjlCnV65cUUopVVBQoB544AG1devW\nUu87Ql0qVXmcjlCX1y1cuFCNHj263HhsUZ81qoVTlYc/4+LiiIiIAMBkMlFYWGjz53Wq+pCqsvPV\nzJ49e9K0adMK33eEuoTK4wT71yVA8+bN8fHxAaBx48YYjUbOnDlTahtHqNOqxAn2r9OGDRsCkJ+f\nT1FREc2bNy/1viPUZVXiBPvXJWjPMsbFxTFp0qRy47FFfdaohFOVhz8d4QHRqsSg0+nYs2cPBoOB\nfv36cfjwYZvGWBWOUJdV4Yh1mZqayv79++nRo0ep9Y5WpxXF6Qh1WlxcjJ+fH82bN6dPnz54e3uX\net9R6rKyOB2hLgFmzpzJG2+8gZNT+R/7tqjPGtNLDar+8OeN2dvWD41WpTx/f3/MZjMNGjQgPj6e\nRx55hJMnT9ogultj77qsCkery8uXLzNy5EiWLFnCXXfdVeZ9R6nTm8XpCHXq5OTEoUOHuHDhAiEh\nISQkJBAUFFRqG0eoy8ridIS63Lx5M25ubphMppsOuWPt+qxRLRwPDw/S0tIsr9PS0kpl5PK2MZvN\neHh42CzG8mIoL87GjRvToEEDAB566CHq16/P2bNnbRpnZRyhLqvCkeqyoKCARx99lNGjR/PII4+U\ned9R6rSyOB2pTps0acKgQYPYu3dvqfWOUpfXVRSnI9Tl7t27+eyzz2jbti2jRo1i69atjBs3rtQ2\ntqjPGpVwunbtSkpKCunp6RQUFLBu3ToGDhxYapvQ0FBWr14NwMGDB3F2dsbd3d3h4szKyrIsJyUl\nkZubi5ubm03jrIwj1GVVOEpdKqWYOHEi3t7eFfaqcoQ6rUqc9q7Tc+fOcenSJQCuXr3Kl19+WaaX\noiPUZVXitHddAsyfP5+0tDROnjzJmjVr6Nu3Lx9++GGpbWxRnzXqklpFD38uW7YMgMmTJ/Poo4+y\nbds29Ho9d955JytXrnTIOD/++GPee+89AOrXr89HH31U4bVVaxk1ahTbt28nKysLT09P5syZQ0FB\ngSVGR6jLqsTpCHUJsGvXLmJiYjAajZhMJkD7Qz99+rQlVkeo06rEae86PXPmDOPGjUMpRV5eHqNH\nj2bQoEEO97delTjtXZfluX6pzNb1KQ9+CiGEsIkadUlNCCFEzSUJRwghhE1IwhFCCGETknCEEELY\nhCQcIYQQNiEJRwghhE1IwhG12s2mNti7dy9t27a1DBt/11130blzZ0wmE+PHj7/lslJTU0uVs3Pn\nTrp164bJZMJoNLJ8+fJKj5GQkFBq6PhXXnmFgQMHkp+fD8CcOXOA0kOQlLeupAEDBtC0adMKh6QX\nwlZq1IOfQtyqxx9/nKeffrrMMB4An3/+OYsWLWLYsGEA9OnTh4ULF1bLTLI///wzY8aMYcuWLXh5\neXHhwgUGDhxIkyZNeOyxx6p0jNdee409e/YQFxfHt99+a3kQ73//+x/79u1j5MiRZdbNmzevzHFe\neOEFrly5YnnITwh7kRaOqNVuNrXB1q1b6d+/f6l1FbUSNm7caNn2l19+oVOnTmRkZFRY7rvvvsvk\nyZPx8vICtHG2FixYwKJFi24a7/UnwBcuXMgXX3zBpk2buPPOO/Hz82PKlCmsWrWK+Ph45s2bV+66\n8vTt25fGjRvftFwhbEESjqiTsrKyqFevXplRkisaHXfYsGHcd999vPXWW/z5z39m7ty5Nx0PKyUl\nhYCAgFLr/P39OXr06E3jUkqxc+dOli1bxueff87//d//AXD48GHeffddIiIieOihh/jb3/5W7joh\nHMNqM8sAAAHlSURBVJkkHFEnxcfHExISckv7vPnmm0RFRdGgQQPCwsIq3b681lJlI0npdDo6dOhg\nifE6X19fFi9ezL333svQoUN59dVXy10nhCOThCPqpC1btjBgwIBb2ictLQ1nZ2d+/fXXShOHwWAg\nKSmp1LqkpCR8fX1vup9SiubNmxMbG8uMGTPKzF0ye/bsMvuUXLdv3z5LJ4jNmzdb1jviPEai7pGE\nI+ocpRRHjhyp9MO/pMLCQiZOnMiaNWvo3Llzpfdi/vznP/Pee+/x/fffA3DhwgVeeuklZsyYAWj3\nhGbNmlXh/h06dGDDhg2MHTv2lmaIDAwMJDk5meTkZAYPHmxZL2P0CkcgvdRErXbj1AZz587FYDBY\nhuWvqqioKHr16kX37t0xGo107dqVwYMH06lTp1LbXW9JtGvXjlWrVjF+/Hjy8vIoKipi6tSplktx\nP/30E02aNClTjk6nsxwjICCAlStX8vDDD5OQkEDbtm1vpwro2bMnP/zwA5cvX8bT05MVK1YQHBx8\nW8cS4o+Q6QlEnTNv3jw6dOhQ5e7J1hAREcHixYtp1qyZ3WIQwtYk4QghhLAJuYcjhBDCJiThCCGE\nsAlJOEIIIWxCEo4QQgibkIQjhBDCJiThCCGEsAlJOEIIIWzi/wPFTAXXZ9H/2gAAAABJRU5ErkJg\ngg==\n", "text": [ "" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.8 - Page No :737\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variable\n", "M = 153.82; \t\t\t #[kg/mole] - molecular weight of ccl4\n", "T1 = 349.90; \t\t\t #[K] - temperature1\n", "T2 = 293.15; \t\t\t #[K] - temperature 2\n", "cp1 = 0.9205; \t\t\t #[KJ/kg*K] - heat capacity at temperature T1\n", "cp2 = 0.8368; \t\t\t #[KJ/kg*K] - heat capacity at temperature T2\n", "p1 = 1480.; \t\t\t #[kg/m**3] - density at temperature T1\n", "p2 = 1590.; \t\t\t #[kg/m**3] - density at temperature T2\n", "Tb = 349.90; \t\t\t #[K] - normal boiling point\n", "pb = 1480.; \t\t\t #[kg/m**3] - density at normal boiling point\n", "cpb = 0.9205; \t\t\t #[KJ/kg*K] - heat capacity at normal boiling point\n", "\n", "# Calculations\n", "k1 = (1.105/(M**(1./2)))*(cp1/cpb)*((p1/pb)**(4./3))*(Tb/T1);\n", "k2 = (1.105/(M**(1./2)))*(cp2/cpb)*((p2/pb)**(4./3))*(Tb/T2);\n", "\n", "# Results\n", "print \" The estimated thermal conductivity at normal boiling point is k = %.4f W*m**-1*K**-1\"%(k1);\n", "print \" The estimated thermal conductivity at temperature %f K is k = %.4f W*m**-1*K**-1\"%(T2,k2);\n", "print \" The estimated value is 3.4 percent higher than the experimental value of 0.1029 W*m**-1*K**-1\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The estimated thermal conductivity at normal boiling point is k = 0.0891 W*m**-1*K**-1\n", " The estimated thermal conductivity at temperature 293.150000 K is k = 0.1064 W*m**-1*K**-1\n", " The estimated value is 3.4 percent higher than the experimental value of 0.1029 W*m**-1*K**-1\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.9 - Page No :743\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# Variables\n", "T = 288.; \t\t\t #[K] - temperature\n", "M1 = 60.09; \t \t\t #[kg/mole] - molecular weight of proponal\n", "M2 = 18.015; \t\t \t #[kg/mole] - molecular weight of water\n", "mu1 = 2.6*10**-3; \t\t\t #[kg/m*sec] - viscosity of proponal\n", "mu2 = 1.14*10**-3; \t\t #[kg/m*sec] - viscosity of water\n", "Vc = 14.8*10**-3; \t\t\t #[m**3/kmol] - molar volume of carbon\n", "Vh = 3.7*10**-3; \t\t\t #[m**3/kmol] - mlar volume of hydrogen\n", "Vo = 7.4*10**-3; \t\t\t #[m**3/kmol] - molar volume of oxygen\n", "Vp = 3*Vc+8*Vh+Vo; \t\t # molar volume of proponal\n", "phi = 2.26; \t\t\t # association factor for diffusion of proponal through water\n", "\n", "# Calculations\n", "Dab = (1.17*10**-16*(T)*(phi*M2)**(1./2))/(mu2*(Vp**0.6));\n", "print \" The diffusion coefficient of proponal through water is Dab = %.1e m**2/sec\"%(Dab);\n", "phi = 1.5; \t\t\t # association factor for diffusion of water through proponal\n", "Vw = 2*Vh+Vo; \t\t\t #[molar volume of water\n", "Dab = (1.17*10**-16*(T)*(phi*M1)**(1./2))/(mu1*(Vw**0.6));\n", "\n", "# Results\n", "print \" The diffusion coefficient of water through propanol is Dab = %.1e m**2/sec\"%(Dab);\n", "\n", "# Answer may vary because of rounding error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The diffusion coefficient of proponal through water is Dab = 8.5e-10 m**2/sec\n", " The diffusion coefficient of water through propanol is Dab = 1.5e-09 m**2/sec\n" ] } ], "prompt_number": 26 } ], "metadata": {} } ] }