summaryrefslogtreecommitdiff
path: root/Strength_Of_Materials_by_B_K_Sarkar/chapter_9_som_1.ipynb
blob: 318df44ce324551243a1b5147baba0a861668f41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
{
 "metadata": {
  "name": "chapter 9 som.ipynb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Chapter No.9:Columns And Struts"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 9.1,Page no.232"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "D=15 #cm #External Diameter\n",
      "t=2 #cm #Thickness\n",
      "L=6 #m #Length of cyclinder\n",
      "E=80*10**9 #Pa\n",
      "alpha=1*1600**-1 \n",
      "sigma_c=550*10**6 #Pa #compressive stress\n",
      "\n",
      "#Calculations\n",
      "\n",
      "d=D-2*t #m #Internal Diameter\n",
      "A=pi*4**-1*(D**2-d**2)*10**-4 #m**2 #Areaof Tube\n",
      "I=pi*64**-1*(D**4-d**4)*10**-4 #m**4 #M.I of tube\n",
      "k=(I*A**-1)**0.5 #m #Radius of Gyration\n",
      "\n",
      "P_e=pi**2*E*I*(L**2)**-1 #Euler's Load\n",
      "P_R=sigma_c*A*(1+alpha*(L*k**-1)**2)**-1 #According to Rankine's Formula\n",
      "\n",
      "#The Answer in Textbook is incorrect for P_R \n",
      "\n",
      "#Now again from Rankine's Formula\n",
      "#As K=I*A**-1,so substituting in below equation\n",
      "#Thus Stress calculated from Euler's Formula cannot exceed the yield stress of 550 MPa\n",
      "L=(pi**2*E*k**2*(550*10**6)**-1)**0.5*10**-2 #m #Length of cyclinder\n",
      "\n",
      "#Result\n",
      "print\"The Length of strut is\",round(L,2),\"cm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Length of strut is 1.76 cm\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 9.2,Page no.233"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "\n",
      "L=1.5 #m #Length of steelbar\n",
      "b=2 #cm #bredth of steelbar\n",
      "d=0.5 #cm #depth of steelbar\n",
      "sigma=320 #MPa #Yield point\n",
      "E=210 #GPa #modulus of Elasticity of steelbar\n",
      "\n",
      "#Calculations\n",
      "\n",
      "I_min=b*d**3*12**-1*10**-8 #m**4 #Moment of Inertia \n",
      "P=pi**2*E*10**9*I_min*(L**2)**-1 #N #N #Crippling Load\n",
      "\n",
      "#Let dell=Central Deflection\n",
      "\n",
      "#M=P*dell #Max Bending moment\n",
      "#After substituting value in above equation we get\n",
      "#M=191.9*dell\n",
      "\n",
      "A=b*d*10**-4 #m**2 #Area of steel bar\n",
      "sigma_1=P*A**-1*10**-6 #Mpa #Direct stress\n",
      "\n",
      "Z=b*d**3*10**-6  #Section modulus \n",
      "#sigma_2=M*Z**-1 #N/m**2 #Bending stress\n",
      "#After substituting value in above equation we get\n",
      "#sigma_2=dell*2302.8*10**6 #N/m**2 \n",
      "\n",
      "#sigma=sigma_1+sigma_2\n",
      "#Now substituting value of Bending stress and direct stress in above equation we get\n",
      "\n",
      "#320*10**6=1.919*10**6+2302.8*10**6*dell\n",
      "dell=((320*10**6-1.919*10**6)*(2302.8*10**6)**-1)*10**2 #cm #Central Deflection\n",
      "\n",
      "#Result\n",
      "print\"Maximum Central Deflection is\",round(dell,2),\"cm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum Central Deflection is 13.81 cm\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 9.3,Page no.233"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "dell=1 #cm #Deflection\n",
      "FOS=4 #Factor of safety\n",
      "E=210 #GPa #Modulus of Elasticity of steel bar\n",
      "W=40 #KN #Load \n",
      "\n",
      "#Flange Dimensions\n",
      "b=30 #cm #width of flange\n",
      "d=5 #cm #depth of flange\n",
      "\n",
      "#Web Dimensions\n",
      "d_1=100 #cm #Depth of web\n",
      "t_1=2 #cm #Thcikness of web\n",
      "\n",
      "#Calculations\n",
      "\n",
      "I_xx=(0.3*1.1**3-0.28*1**3)*12**-1 #m**4 #M.I about x-x axis\n",
      "I_yy=2*0.05*0.3**3*12**-1+1*0.02**3*12**-1 #m**4 #M.I about y-y axis\n",
      "\n",
      "#From the equation of deflection we get\n",
      "L=(dell*10**-2*384*E*10**9*I_xx*(5*40*10**3)**-1)**0.25 #m #Length of beam\n",
      "P=pi**2*210*I_yy*10**9*4*(L**2)**-1 #N #crippling Load\n",
      "S=P*4**-1 #N #Safe Load\n",
      "\n",
      "#Result\n",
      "print\"The Safe Load is\",round(S,2),\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Safe Load is 2336127.78 N\n"
       ]
      }
     ],
     "prompt_number": 32
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 9.5,Page no.235"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "L=4 #m #Length of column\n",
      "W=250 #KN #Safe Load\n",
      "FOS=5 #Factor of safety\n",
      "#d=0.8*D #Internal diameter is 0.8 times Extarnal Diameter\n",
      "sigma_c=550 #MPa #Compressive stress\n",
      "alpha=1*1600**-1 #constant\n",
      "\n",
      "#Calculations\n",
      "\n",
      "P=W*FOS #N #Crippling Load\n",
      "\n",
      "#A=pi*4**-1(D**2-d**2) #m**2 #Area of hollow cyclinder\n",
      "#After substituting value of d we get\n",
      "\n",
      "#A=pi*0.09*D**2\n",
      "\n",
      "#I=pi*64**-1*(D**4-d**4) #m**4 #Mo,ent Of Inertia\n",
      "#After substituting value of d we get d we get\n",
      "\n",
      "#I=0.009225*pi*D**4\n",
      "\n",
      "#K=(I*A**-1)**0.5 #Radius of Gyration\n",
      "#After substituting value of I and A and further simplifying we get\n",
      "#K=0.32*D\n",
      "\n",
      "#Now using the Relation we get\n",
      "#P=sigma_c*A*(1+alpha*(l_e*k)**2)**-1 #Rankines Formula\n",
      "#Now Substituting values in above equation we get\n",
      "#125*10**4=550*10**6*pi*0.09*D**2*(1+1*1600**-1*((2*0.32)**2)**-1)**-1\n",
      "\n",
      "#Further simplifying and rearranging we get\n",
      "#D**4-0.008038*D**2-0.0001962397=0\n",
      "\n",
      "a=1\n",
      "b=-0.008038\n",
      "c=-0.0001962397\n",
      "\n",
      "X=b**2-4*a*c\n",
      "\n",
      "D_1=((-b+X**0.5)*(2*a)**-1)**0.5*10**2\n",
      "D_2=((-b-X**0.5)*(2*a)**-1)**0.5\n",
      "\n",
      "#Thus Diameter cannot be negative, discard value of D_2\n",
      "d=0.8*D_1\n",
      "\n",
      "#Result\n",
      "print\"The Minimum Diameter is\",round(d,2),\"cm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Minimum Diameter is 10.91 cm\n"
       ]
      }
     ],
     "prompt_number": 33
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 9.6,Page no.236"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "d=0.04 #m #Internal Diameter of tube\n",
      "D=0.05 #m #External Diameter of tube\n",
      "P_1=240*10**3 #N #Compressive Load\n",
      "P_2=158*10**3#N #Failure Load\n",
      "L=2 #m #Length of tube\n",
      "l=3 #m #Length of strut\n",
      "\n",
      "#Calculations\n",
      "\n",
      "A=pi*4**-1*(D**2-d**2) #m**2 #Areaof Tube\n",
      "I=pi*64**-1*(D**4-d**4) #m**4 #M.I of tube\n",
      "k=(I*A**-1)**0.5 #m #Radius of Gyration\n",
      "sigma_c=P*A**-1 #Pa #Compressive stress\n",
      "\n",
      "l_e=L*2**-1 #m #According to given condition i.e Both ends fixed\n",
      "\n",
      "#Now from crippling Load Equation we get\n",
      "alpha=((sigma_c*A*P_2**-1-1)*((l_e*k**-1)**2)**-1)*10**4\n",
      "\n",
      "#Now Crippling Load when L=3 m Is used as strut\n",
      "l_e_2=l*(2**0.5)**-1\n",
      "P_3=sigma_c*A*(1+alpha*10**-4*(l_e_2*k**-1)**2)**-1 \n",
      "\n",
      "\n",
      "print\"The Value of constant value alpha is\",round(alpha,2)\n",
      "print\"The Crippling Load of Tube is\",round(P_3,2),\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Value of constant value alpha is 1.33\n",
        "The Crippling Load of Tube is 71954.46 N\n"
       ]
      }
     ],
     "prompt_number": 54
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 9.8,Page no.239"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "D=0.038 #m #External diameter\n",
      "d=0.035 #m #Internal diameter\n",
      "P=20*10**3 #N #Load\n",
      "E=210*10**9 #Pa \n",
      "e=0.002 #m #Eccentricity\n",
      "L=1.5 #m #Lenght of tube\n",
      "\n",
      "#Calculations\n",
      "\n",
      "A=pi*4**-1*(D**2-d**2) #m**2 column\n",
      "I=pi*64**-1*(D**4-d**4) #m**4 #M.I of column\n",
      "m=(P*(E*I)**-1)**0.5 \n",
      "\n",
      "#Let X=secmL*2**-1\n",
      "X=(1*(cos(m*L*2**-1))**-1)\n",
      "M=P*e*X #N-m #MAx Bending Moment\n",
      "sigma_1=P*A**-1*10**-6 #Pa #Direct stress\n",
      "sigma_2=M*0.019*I**-1*10**-6 #Pa #Bending stress\n",
      "\n",
      "sigma_c_max=(sigma_1+sigma_2) #MPa #Max compressive stress\n",
      "\n",
      "#Result\n",
      "print\"The Max stress developed is\",round(sigma_c_max,2),\"MPa\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Max stress developed is 246.79 MPa\n"
       ]
      }
     ],
     "prompt_number": 130
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 9.9,Page no.239"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "L=5 #m #Length of column\n",
      "D=0.2 #m #External Diameter\n",
      "d=0.14 #m #Internal diameter\n",
      "P=200*10**3 #N #Load\n",
      "e=0.015 #m #Eccentricity\n",
      "E=95 *10**9 #Pa \n",
      "\n",
      "#Calculations\n",
      "\n",
      "L_2=L*2**-1 #m #half length of column\n",
      "A=pi*4**-1*(D**2-d**2) #m**2 column\n",
      "I=pi*64**-1*(D**4-d**4) #m**4 #M.I of column\n",
      "m=(P*(E*I)**-1)**0.5 \n",
      "\n",
      "#Let X=secmL*2**-1\n",
      "X=(1*(cos(m*L_2*2**-1))**-1)\n",
      "M=P*e*X #N-m #MAx Bending Moment\n",
      "sigma_1=P*A**-1*10**-6 #Pa #Direct stress\n",
      "sigma_2=M*0.1*I**-1*10**-6 #Pa #Bending stress\n",
      "\n",
      "sigma_c_max=(sigma_1+sigma_2) #MPa #Max compressive stress\n",
      "\n",
      "print\"The Max stress developed is\",round(sigma_c_max,2),\"MPa\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Max stress developed is 17.65 MPa\n"
       ]
      }
     ],
     "prompt_number": 125
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 9.10,Page no.240"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "L=3 #m #Length of strut\n",
      "b=0.04 #m #Width of rectangle\n",
      "d=0.10 #m #Depth if rectangle\n",
      "P=100*10**3 #N #Axial thrust\n",
      "w=10*10**3 #N #Uniformly Distributed Load\n",
      "E=210*10**9 #Pa \n",
      "\n",
      "#Calculations\n",
      "\n",
      "A=b*d #m**2 #Area of strut\n",
      "I=b*d**3*12**-1 #m**4 #M.I \n",
      "m=(P*(E*I)**-1)**0.5 \n",
      "\n",
      "#Let X=secmL*2**-1\n",
      "X=(1*(cos(m*L*2**-1))**-1)\n",
      "\n",
      "M=w*E*I*P**-1*(X-1)*3**-1 #N*m #Max Bending Moment\n",
      "sigma_1=P*A**-1 #Pa #Direct stress\n",
      "sigma_2=M*0.05*I**-1 #Pa #Bending stress\n",
      "\n",
      "sigma_c_max=sigma_1+sigma_2 #Max compressive stress\n",
      "\n",
      "#If the Eccentricity of thrust is neglected\n",
      "M_2=w*L**2*(3*8)**-1 #Max Bending moment\n",
      "sigma_2_2=M_2*0.05*I**-1 #Pa #Bending stress\n",
      "\n",
      "sigma_c_max_2=(sigma_1+sigma_2_2)*10**-6 #Pa\n",
      "\n",
      "#Let Y=Percentage error\n",
      "Y=((sigma_c_max-sigma_c_max_2*10**6)*sigma_c_max**-1)*100\n",
      "\n",
      "#Result\n",
      "print\"Max stress induced is\",round(sigma_c_max_2,2),\"MPa\"\n",
      "print\"The Percentage Error is\",round(Y,3),\"%\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Max stress induced is 81.25 MPa\n",
        "The Percentage Error is 9.638 %\n"
       ]
      }
     ],
     "prompt_number": 98
    }
   ],
   "metadata": {}
  }
 ]
}