{ "metadata": { "name": "chapter 9 som.ipynb" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Chapter No.9:Columns And Struts" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem no 9.1,Page no.232" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "D=15 #cm #External Diameter\n", "t=2 #cm #Thickness\n", "L=6 #m #Length of cyclinder\n", "E=80*10**9 #Pa\n", "alpha=1*1600**-1 \n", "sigma_c=550*10**6 #Pa #compressive stress\n", "\n", "#Calculations\n", "\n", "d=D-2*t #m #Internal Diameter\n", "A=pi*4**-1*(D**2-d**2)*10**-4 #m**2 #Areaof Tube\n", "I=pi*64**-1*(D**4-d**4)*10**-4 #m**4 #M.I of tube\n", "k=(I*A**-1)**0.5 #m #Radius of Gyration\n", "\n", "P_e=pi**2*E*I*(L**2)**-1 #Euler's Load\n", "P_R=sigma_c*A*(1+alpha*(L*k**-1)**2)**-1 #According to Rankine's Formula\n", "\n", "#The Answer in Textbook is incorrect for P_R \n", "\n", "#Now again from Rankine's Formula\n", "#As K=I*A**-1,so substituting in below equation\n", "#Thus Stress calculated from Euler's Formula cannot exceed the yield stress of 550 MPa\n", "L=(pi**2*E*k**2*(550*10**6)**-1)**0.5*10**-2 #m #Length of cyclinder\n", "\n", "#Result\n", "print\"The Length of strut is\",round(L,2),\"cm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Length of strut is 1.76 cm\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem no 9.2,Page no.233" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "\n", "L=1.5 #m #Length of steelbar\n", "b=2 #cm #bredth of steelbar\n", "d=0.5 #cm #depth of steelbar\n", "sigma=320 #MPa #Yield point\n", "E=210 #GPa #modulus of Elasticity of steelbar\n", "\n", "#Calculations\n", "\n", "I_min=b*d**3*12**-1*10**-8 #m**4 #Moment of Inertia \n", "P=pi**2*E*10**9*I_min*(L**2)**-1 #N #N #Crippling Load\n", "\n", "#Let dell=Central Deflection\n", "\n", "#M=P*dell #Max Bending moment\n", "#After substituting value in above equation we get\n", "#M=191.9*dell\n", "\n", "A=b*d*10**-4 #m**2 #Area of steel bar\n", "sigma_1=P*A**-1*10**-6 #Mpa #Direct stress\n", "\n", "Z=b*d**3*10**-6 #Section modulus \n", "#sigma_2=M*Z**-1 #N/m**2 #Bending stress\n", "#After substituting value in above equation we get\n", "#sigma_2=dell*2302.8*10**6 #N/m**2 \n", "\n", "#sigma=sigma_1+sigma_2\n", "#Now substituting value of Bending stress and direct stress in above equation we get\n", "\n", "#320*10**6=1.919*10**6+2302.8*10**6*dell\n", "dell=((320*10**6-1.919*10**6)*(2302.8*10**6)**-1)*10**2 #cm #Central Deflection\n", "\n", "#Result\n", "print\"Maximum Central Deflection is\",round(dell,2),\"cm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum Central Deflection is 13.81 cm\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem no 9.3,Page no.233" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "dell=1 #cm #Deflection\n", "FOS=4 #Factor of safety\n", "E=210 #GPa #Modulus of Elasticity of steel bar\n", "W=40 #KN #Load \n", "\n", "#Flange Dimensions\n", "b=30 #cm #width of flange\n", "d=5 #cm #depth of flange\n", "\n", "#Web Dimensions\n", "d_1=100 #cm #Depth of web\n", "t_1=2 #cm #Thcikness of web\n", "\n", "#Calculations\n", "\n", "I_xx=(0.3*1.1**3-0.28*1**3)*12**-1 #m**4 #M.I about x-x axis\n", "I_yy=2*0.05*0.3**3*12**-1+1*0.02**3*12**-1 #m**4 #M.I about y-y axis\n", "\n", "#From the equation of deflection we get\n", "L=(dell*10**-2*384*E*10**9*I_xx*(5*40*10**3)**-1)**0.25 #m #Length of beam\n", "P=pi**2*210*I_yy*10**9*4*(L**2)**-1 #N #crippling Load\n", "S=P*4**-1 #N #Safe Load\n", "\n", "#Result\n", "print\"The Safe Load is\",round(S,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Safe Load is 2336127.78 N\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem no 9.5,Page no.235" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "L=4 #m #Length of column\n", "W=250 #KN #Safe Load\n", "FOS=5 #Factor of safety\n", "#d=0.8*D #Internal diameter is 0.8 times Extarnal Diameter\n", "sigma_c=550 #MPa #Compressive stress\n", "alpha=1*1600**-1 #constant\n", "\n", "#Calculations\n", "\n", "P=W*FOS #N #Crippling Load\n", "\n", "#A=pi*4**-1(D**2-d**2) #m**2 #Area of hollow cyclinder\n", "#After substituting value of d we get\n", "\n", "#A=pi*0.09*D**2\n", "\n", "#I=pi*64**-1*(D**4-d**4) #m**4 #Mo,ent Of Inertia\n", "#After substituting value of d we get d we get\n", "\n", "#I=0.009225*pi*D**4\n", "\n", "#K=(I*A**-1)**0.5 #Radius of Gyration\n", "#After substituting value of I and A and further simplifying we get\n", "#K=0.32*D\n", "\n", "#Now using the Relation we get\n", "#P=sigma_c*A*(1+alpha*(l_e*k)**2)**-1 #Rankines Formula\n", "#Now Substituting values in above equation we get\n", "#125*10**4=550*10**6*pi*0.09*D**2*(1+1*1600**-1*((2*0.32)**2)**-1)**-1\n", "\n", "#Further simplifying and rearranging we get\n", "#D**4-0.008038*D**2-0.0001962397=0\n", "\n", "a=1\n", "b=-0.008038\n", "c=-0.0001962397\n", "\n", "X=b**2-4*a*c\n", "\n", "D_1=((-b+X**0.5)*(2*a)**-1)**0.5*10**2\n", "D_2=((-b-X**0.5)*(2*a)**-1)**0.5\n", "\n", "#Thus Diameter cannot be negative, discard value of D_2\n", "d=0.8*D_1\n", "\n", "#Result\n", "print\"The Minimum Diameter is\",round(d,2),\"cm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Minimum Diameter is 10.91 cm\n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem no 9.6,Page no.236" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "d=0.04 #m #Internal Diameter of tube\n", "D=0.05 #m #External Diameter of tube\n", "P_1=240*10**3 #N #Compressive Load\n", "P_2=158*10**3#N #Failure Load\n", "L=2 #m #Length of tube\n", "l=3 #m #Length of strut\n", "\n", "#Calculations\n", "\n", "A=pi*4**-1*(D**2-d**2) #m**2 #Areaof Tube\n", "I=pi*64**-1*(D**4-d**4) #m**4 #M.I of tube\n", "k=(I*A**-1)**0.5 #m #Radius of Gyration\n", "sigma_c=P*A**-1 #Pa #Compressive stress\n", "\n", "l_e=L*2**-1 #m #According to given condition i.e Both ends fixed\n", "\n", "#Now from crippling Load Equation we get\n", "alpha=((sigma_c*A*P_2**-1-1)*((l_e*k**-1)**2)**-1)*10**4\n", "\n", "#Now Crippling Load when L=3 m Is used as strut\n", "l_e_2=l*(2**0.5)**-1\n", "P_3=sigma_c*A*(1+alpha*10**-4*(l_e_2*k**-1)**2)**-1 \n", "\n", "\n", "print\"The Value of constant value alpha is\",round(alpha,2)\n", "print\"The Crippling Load of Tube is\",round(P_3,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Value of constant value alpha is 1.33\n", "The Crippling Load of Tube is 71954.46 N\n" ] } ], "prompt_number": 54 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem no 9.8,Page no.239" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "D=0.038 #m #External diameter\n", "d=0.035 #m #Internal diameter\n", "P=20*10**3 #N #Load\n", "E=210*10**9 #Pa \n", "e=0.002 #m #Eccentricity\n", "L=1.5 #m #Lenght of tube\n", "\n", "#Calculations\n", "\n", "A=pi*4**-1*(D**2-d**2) #m**2 column\n", "I=pi*64**-1*(D**4-d**4) #m**4 #M.I of column\n", "m=(P*(E*I)**-1)**0.5 \n", "\n", "#Let X=secmL*2**-1\n", "X=(1*(cos(m*L*2**-1))**-1)\n", "M=P*e*X #N-m #MAx Bending Moment\n", "sigma_1=P*A**-1*10**-6 #Pa #Direct stress\n", "sigma_2=M*0.019*I**-1*10**-6 #Pa #Bending stress\n", "\n", "sigma_c_max=(sigma_1+sigma_2) #MPa #Max compressive stress\n", "\n", "#Result\n", "print\"The Max stress developed is\",round(sigma_c_max,2),\"MPa\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Max stress developed is 246.79 MPa\n" ] } ], "prompt_number": 130 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem no 9.9,Page no.239" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "L=5 #m #Length of column\n", "D=0.2 #m #External Diameter\n", "d=0.14 #m #Internal diameter\n", "P=200*10**3 #N #Load\n", "e=0.015 #m #Eccentricity\n", "E=95 *10**9 #Pa \n", "\n", "#Calculations\n", "\n", "L_2=L*2**-1 #m #half length of column\n", "A=pi*4**-1*(D**2-d**2) #m**2 column\n", "I=pi*64**-1*(D**4-d**4) #m**4 #M.I of column\n", "m=(P*(E*I)**-1)**0.5 \n", "\n", "#Let X=secmL*2**-1\n", "X=(1*(cos(m*L_2*2**-1))**-1)\n", "M=P*e*X #N-m #MAx Bending Moment\n", "sigma_1=P*A**-1*10**-6 #Pa #Direct stress\n", "sigma_2=M*0.1*I**-1*10**-6 #Pa #Bending stress\n", "\n", "sigma_c_max=(sigma_1+sigma_2) #MPa #Max compressive stress\n", "\n", "print\"The Max stress developed is\",round(sigma_c_max,2),\"MPa\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Max stress developed is 17.65 MPa\n" ] } ], "prompt_number": 125 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem no 9.10,Page no.240" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Initilization of variables\n", "\n", "L=3 #m #Length of strut\n", "b=0.04 #m #Width of rectangle\n", "d=0.10 #m #Depth if rectangle\n", "P=100*10**3 #N #Axial thrust\n", "w=10*10**3 #N #Uniformly Distributed Load\n", "E=210*10**9 #Pa \n", "\n", "#Calculations\n", "\n", "A=b*d #m**2 #Area of strut\n", "I=b*d**3*12**-1 #m**4 #M.I \n", "m=(P*(E*I)**-1)**0.5 \n", "\n", "#Let X=secmL*2**-1\n", "X=(1*(cos(m*L*2**-1))**-1)\n", "\n", "M=w*E*I*P**-1*(X-1)*3**-1 #N*m #Max Bending Moment\n", "sigma_1=P*A**-1 #Pa #Direct stress\n", "sigma_2=M*0.05*I**-1 #Pa #Bending stress\n", "\n", "sigma_c_max=sigma_1+sigma_2 #Max compressive stress\n", "\n", "#If the Eccentricity of thrust is neglected\n", "M_2=w*L**2*(3*8)**-1 #Max Bending moment\n", "sigma_2_2=M_2*0.05*I**-1 #Pa #Bending stress\n", "\n", "sigma_c_max_2=(sigma_1+sigma_2_2)*10**-6 #Pa\n", "\n", "#Let Y=Percentage error\n", "Y=((sigma_c_max-sigma_c_max_2*10**6)*sigma_c_max**-1)*100\n", "\n", "#Result\n", "print\"Max stress induced is\",round(sigma_c_max_2,2),\"MPa\"\n", "print\"The Percentage Error is\",round(Y,3),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Max stress induced is 81.25 MPa\n", "The Percentage Error is 9.638 %\n" ] } ], "prompt_number": 98 } ], "metadata": {} } ] }