1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 9 : Silicon Controlled Rectifier"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.1, Page No. 238 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# average voltage\n",
"\n",
"import math\n",
"#Variable declaration\n",
"Vm=200.0 #in V\n",
"theta=30.0 #firing angle in degree\n",
"\n",
"#Calculations\n",
"vdc=((Vm/math.pi)*(1+math.cos(theta*math.pi/180)))\n",
"\n",
"#Result\n",
"print(\"average value of voltage is ,(V)= %.f\"%(round(vdc)))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"average value of voltage is ,(V)= 119\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.2, Page No. 238"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# dc load current rms load current amd power dissipiated\n",
"\n",
"import math\n",
"#Variable declaration\n",
"Va=300.0 # in V\n",
"Vm=300.0*math.sqrt(2) # in V\n",
"Rl=50.0 #in ohm\n",
"theta1=90.0 #firing angle in degree\n",
"\n",
"#Calculations\n",
"idc=((Vm/(2*math.pi*Rl))*(1+math.cos(theta1*math.pi/180)))\n",
"irms=Va/(2*Rl)\n",
"P=irms**2*Rl\n",
"\n",
"#Result\n",
"print(\"(i) The dc load current is ,(A) = %.2f\"%idc)\n",
"print(\"(ii) The rms load current is ,(A) = %.f\"%(round(irms)))\n",
"print(\"(iii) The power dissipated by the load is ,(W)= %.f\"%(round(P)))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) The dc load current is ,(A) = 1.35\n",
"(ii) The rms load current is ,(A) = 3\n",
"(iii) The power dissipated by the load is ,(W)= 450\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.3, Page No. 239"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# firing angle conducting angle and average current\n",
"\n",
"import math\n",
"#Variable declaration\n",
"Ih=0.0 #in A\n",
"Vi=100.0 #in V\n",
"Vm=200.0 #in V\n",
"Rl=100.0 #in ohm\n",
"\n",
"#Calculations\n",
"theta1=(180/math.pi)*math.asin(Vi/Vm) #firing angle in degree\n",
"ca=180-theta1 #conducting angle in dehree\n",
"av=((Vm/(2*math.pi))*(1+math.cos(theta1*math.pi/180)))\n",
"ac=av/Rl \n",
"\n",
"#Result \n",
"print(\"(i) firing angle is ,(degree) = %.f\u00b0\"%(theta1))\n",
"print(\"(ii) conducting angle is ,(degree) = %.f\u00b0\"%ca)\n",
"print(\"(iii) average current is ,(A) = %.4f\"%ac)\n",
"#average current is wrong in the textbook"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) firing angle is ,(degree) = 30\u00b0\n",
"(ii) conducting angle is ,(degree) = 150\u00b0\n",
"(iii) average current is ,(A) = 0.5940\n"
]
}
],
"prompt_number": 10
}
],
"metadata": {}
}
]
}
|