{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9 : Silicon Controlled Rectifier" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.1, Page No. 238 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "# average voltage\n", "\n", "import math\n", "#Variable declaration\n", "Vm=200.0 #in V\n", "theta=30.0 #firing angle in degree\n", "\n", "#Calculations\n", "vdc=((Vm/math.pi)*(1+math.cos(theta*math.pi/180)))\n", "\n", "#Result\n", "print(\"average value of voltage is ,(V)= %.f\"%(round(vdc)))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "average value of voltage is ,(V)= 119\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.2, Page No. 238" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# dc load current rms load current amd power dissipiated\n", "\n", "import math\n", "#Variable declaration\n", "Va=300.0 # in V\n", "Vm=300.0*math.sqrt(2) # in V\n", "Rl=50.0 #in ohm\n", "theta1=90.0 #firing angle in degree\n", "\n", "#Calculations\n", "idc=((Vm/(2*math.pi*Rl))*(1+math.cos(theta1*math.pi/180)))\n", "irms=Va/(2*Rl)\n", "P=irms**2*Rl\n", "\n", "#Result\n", "print(\"(i) The dc load current is ,(A) = %.2f\"%idc)\n", "print(\"(ii) The rms load current is ,(A) = %.f\"%(round(irms)))\n", "print(\"(iii) The power dissipated by the load is ,(W)= %.f\"%(round(P)))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) The dc load current is ,(A) = 1.35\n", "(ii) The rms load current is ,(A) = 3\n", "(iii) The power dissipated by the load is ,(W)= 450\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.3, Page No. 239" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# firing angle conducting angle and average current\n", "\n", "import math\n", "#Variable declaration\n", "Ih=0.0 #in A\n", "Vi=100.0 #in V\n", "Vm=200.0 #in V\n", "Rl=100.0 #in ohm\n", "\n", "#Calculations\n", "theta1=(180/math.pi)*math.asin(Vi/Vm) #firing angle in degree\n", "ca=180-theta1 #conducting angle in dehree\n", "av=((Vm/(2*math.pi))*(1+math.cos(theta1*math.pi/180)))\n", "ac=av/Rl \n", "\n", "#Result \n", "print(\"(i) firing angle is ,(degree) = %.f\u00b0\"%(theta1))\n", "print(\"(ii) conducting angle is ,(degree) = %.f\u00b0\"%ca)\n", "print(\"(iii) average current is ,(A) = %.4f\"%ac)\n", "#average current is wrong in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) firing angle is ,(degree) = 30\u00b0\n", "(ii) conducting angle is ,(degree) = 150\u00b0\n", "(iii) average current is ,(A) = 0.5940\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }