summaryrefslogtreecommitdiff
path: root/Principles_Of_Foundation_Engineering/Chapter03_1.ipynb
blob: 520b4f219845e8ad7996c2988bd10dad18a15db1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
{
 "metadata": {
  "name": "",
  "signature": "sha256:e3a75199f67af72d14bee528a629ae06b2506206625e1ef3a86291ef88f556ed"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 03:Shallow Foundations: Ultimate bearing capacity"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3.1:Pg-130"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 3.1\n",
      "# From Table 3.1\n",
      "Nc=17.69;\n",
      "Nq=7.44;\n",
      "Ny=3.64;\n",
      "q=3*115;\n",
      "Gamma=115.0; #lb/ft**3\n",
      "c=320;\n",
      "B=5.0;#ft\n",
      "FS=4;#factor of safety\n",
      "qu=1.3*c*Nc+q*Nq+0.4*Gamma*B*Ny\n",
      "qall=qu/FS; #q allowed\n",
      "Q=qall*B**2;\n",
      "print Q,\"is allowable gross load in lb\" \n",
      "\n",
      "# the answer is slightly different in textbook due to approximation but here answer are precise"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "67269.0 is allowable gross load in lb\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3.2:Pg-134"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 3.2\n",
      "\n",
      "from scipy.optimize import fsolve\n",
      "import math\n",
      "Gamma=105.0;#lb/ft**3\n",
      "Gammasat=118.0;#lb/ft**3\n",
      "FS=3.0;\n",
      "pa=2014.125;#lb/ft**2\n",
      "Depth=[5,10,15,20,25]; # in ft\n",
      "N60=[4,6,6,10,5]; # in  blow/ft\n",
      "sigmao=[0,0,0,0,0]; # in  lb/ft^2\n",
      "phi=[0,0,0,0,0] # in degree\n",
      "Gammaw=62.4;\n",
      "s=0;\n",
      "print \"depth (ft)\\tN60\\t  \\tstress(lb/ft**2)\\t phi(degrees)\\n\"\n",
      "for i in  range(0,5):\n",
      "    sigmao[i]=2*Gamma+(Depth[i]-2)*(Gammasat-Gammaw);\n",
      "    phi[i]=math.sqrt(20*N60[i]*math.sqrt(pa/sigmao[i]))+20;\n",
      "    print \" \",Depth[i],\"\\t      \",N60[i],\"\\t\\t   \",sigmao[i],\"  \\t \\t  \\t\",round(phi[i],1),\" \\n\"\n",
      "    s=phi[i]+s\n",
      "\n",
      "avgphi=s/(i+1)\n",
      "\n",
      "print round(avgphi),\"average friction angle in degrees\"\n",
      "#using graph get the values of other terms in terms of B and solve for B\n",
      "def f(x):\n",
      "    return-150000/x**2+5263.9+5527.1/x+228.3*x\n",
      "x=fsolve(f,4);\n",
      "print round(x[0],1),\" is the width in ft\"\n",
      "\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "depth (ft)\tN60\t  \tstress(lb/ft**2)\t phi(degrees)\n",
        "\n",
        "  5 \t       4 \t\t    376.8   \t \t  \t33.6  \n",
        "\n",
        "  10 \t       6 \t\t    654.8   \t \t  \t34.5  \n",
        "\n",
        "  15 \t       6 \t\t    932.8   \t \t  \t33.3  \n",
        "\n",
        "  20 \t       10 \t\t    1210.8   \t \t  \t36.1  \n",
        "\n",
        "  25 \t       5 \t\t    1488.8   \t \t  \t30.8  \n",
        "\n",
        "34.0 average friction angle in degrees\n",
        "4.5  is the width in ft\n"
       ]
      }
     ],
     "prompt_number": 24
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3.3:Pg-144"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 3.3\n",
      "\n",
      "import math\n",
      "phi=25.0; #degrees\n",
      "Es=620.0; #kN/m**2\n",
      "Gamma=18.0;#kN/m**2\n",
      "Df=0.6;# in m\n",
      "B=0.6; # in m\n",
      "L=1.2; # in m\n",
      "Fqc=0.347;\n",
      "Nq=10.66;\n",
      "Nc=20.72;\n",
      "Ngamma=10.88;\n",
      "mu=0.3; # Poisson's ratio\n",
      "Fyd=1.0;\n",
      "c=48.0;#kN/m**2\n",
      "q=Gamma*(Df+B/2);\n",
      "Ir=Es/(2*(1+mu)*(c+q*math.tan(phi*math.pi/180.0)));\n",
      "print round(Ir,2),\" is value of Ir\"\n",
      "Fcc=Fqc-(1-Fqc)/(Nq*math.tan(phi*math.pi/180.0));\n",
      "Fcs=1+Nq/Nc*B/L;\n",
      "Fqs=1+B/L*math.tan(phi*math.pi/180.0);\n",
      "Fys=1-0.4*B/L;\n",
      "Fcd=1+0.4*Df/B;\n",
      "Fqd=1+2.0*math.tan(phi*math.pi/180.0)*(1-math.sin(phi*math.pi/180.0))**2*Df/B;\n",
      "q1=0.6*18;\n",
      "Fyc=Fqc;\n",
      "qu=c*Nc*Fcs*Fcd*Fcc+q1*Nq*Fqs*Fqd*Fqc+1.0/2*Gamma*Ngamma*Fys*Fyd*Fyc;\n",
      "print round(qu,2),\"is ultimate bearing capacity in kN/m**2\"\n",
      "\n",
      "# the answer is slightly different in textbook due to approximation but here answer are precise"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "4.29  is value of Ir\n",
        "469.24 is ultimate bearing capacity in kN/m**2\n"
       ]
      }
     ],
     "prompt_number": 29
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3.4:Pg-156"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 3.4\n",
      "import math\n",
      "q=110*4.0; #lb/ft**2\n",
      "Nq=33.3;\n",
      "phi=35.0; # in degree\n",
      "Df=4.0; # in ft\n",
      "B=6.0; # in ft\n",
      "Gamma=110.0;#lb/ft**3\n",
      "Ngamma=48.03; #lb/ft**3\n",
      "B1=6-2*0.5; # in ft\n",
      "Fqi=1;\n",
      "Fyi=1;\n",
      "Fyd=1;\n",
      "Fqs=1;\n",
      "Fys=1;\n",
      "Fqd=1+2*math.tan(phi*math.pi/180)*(1-math.sin(phi*math.pi/180.0))**2*Df/B;\n",
      "qu=q*Nq*Fqs*Fqd*Fqi+1/2.0*B1*Gamma*Ngamma*Fys*Fyd*Fyi;\n",
      "Qult=B1*1*qu;\n",
      "print round(Qult,2),\" is ultimate bearing capacity in lb/ft\" \n",
      "print round(Qult/2000.0,2),\" is ultimate bearing capacity in ton/ft\"\n",
      "\n",
      "# the answer is slightly different in textbook due to approximation but here answer are precise"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "151738.23  is ultimate bearing capacity in lb/ft\n",
        "75.87  is ultimate bearing capacity in ton/ft\n"
       ]
      }
     ],
     "prompt_number": 34
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3.5:Pg-158"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 3.5\n",
      "\n",
      "e=0.5; # in ft\n",
      "B=6; # in ft\n",
      "k=e/B;\n",
      "Gamma=110; # in lb/ft^3 \n",
      "q=440;\n",
      "print \"get the values of Nqe and Nye from the figure from the value of e/B\"\n",
      "Nye=26.8;\n",
      "Nqe=33.4;\n",
      "Qult=B*1*(q*Nqe+1/2.0*Gamma*B*Nye);\n",
      "print round(Qult,2),\" is ultimate bearing capacity in lb/ft\"\n",
      "print round(Qult/2000.0,2),\" is ultimate bearing capacity in ton/ft\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "get the values of Nqe and Nye from the figure from the value of e/B\n",
        "141240.0  is ultimate bearing capacity in lb/ft\n",
        "70.62  is ultimate bearing capacity in ton/ft\n"
       ]
      }
     ],
     "prompt_number": 38
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3.6:Pg-159"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 3.6\n",
      "\n",
      "Df=0.7; # in m\n",
      "#from table\n",
      "Nq=18.4;\n",
      "Ny=22.4;\n",
      "q=12.6;\n",
      "phi=30; #angle in degree\n",
      "L=1.5;# in m\n",
      "Fyd=1;\n",
      "Gamma=18; # in KN/m^3\n",
      "L1=0.85*1.5; # in m\n",
      "L2=0.21*1.5; # in m\n",
      "B=1.5; # in m\n",
      "A=1/2.0*(L1+L2)*B;\n",
      "B1=A/L1; #B'\n",
      "Fqs=1+B1/L1*math.tan(phi*math.pi/180);\n",
      "Fys=1-0.4*B1/L1;\n",
      "Fqd=1+2*math.tan(phi*math.pi/180)*(1-math.sin(phi*math.pi/180))**2*Df/B;\n",
      "Qult=A*(q*Nq*Fqs*Fqd+1/2.0*Gamma*B1*Ny*Fys*Fyd);\n",
      "print round(Qult,2),\" is ultimate load in kN\"\n",
      "\n",
      "# the answer is slightly different in textbook due to approximation but here answer are precise"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "605.45  is ultimate load in kN\n"
       ]
      }
     ],
     "prompt_number": 41
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3.7:Pg-161"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 3.7\n",
      "\n",
      "e=0.15; # in m\n",
      "B=1.5; # in m\n",
      "Fqs=1.0;\n",
      "L=1.5;# in m\n",
      "Gamma=18.0; # in KN/m^3\n",
      "q=0.7*18;\n",
      "#from table\n",
      "Nqe=18.4;\n",
      "Nye=11.58;\n",
      "Fys=1+(2*e/B-0.68)*(B/L)+(0.43-3/2.0*e/B)*(B/L)**2;\n",
      "Qult=B*L*(q*Nqe*Fqs+1/2.0*L*Gamma*Nye*Fys);\n",
      "print round(Qult,2),\"is ultimate load in kN\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "803.03 is ultimate load in kN\n"
       ]
      }
     ],
     "prompt_number": 45
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3.8:Pg-163"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#example 3.8\n",
      "\n",
      "q=16.0;# in kN/m^2\n",
      "Nqei=14.2;\n",
      "Gamma=16.0 # in kN/m^3\n",
      "B=1.5;# in m\n",
      "Nyet=20.0;\n",
      "Qult=B*(Nqei*q+1/2.0*Gamma*B*Nyet);\n",
      "print round(Qult,2),\" is ultimate load in kN/m\"\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "700.8  is ultimate load in kN/m\n"
       ]
      }
     ],
     "prompt_number": 48
    }
   ],
   "metadata": {}
  }
 ]
}