summaryrefslogtreecommitdiff
path: root/Principles_Of_Foundation_Engineering/Chapter03_1.ipynb
diff options
context:
space:
mode:
authorhardythe12015-05-05 14:21:39 +0530
committerhardythe12015-05-05 14:21:39 +0530
commit435840cef00c596d9e608f9eb2d96f522ea8505a (patch)
tree4c783890c984c67022977ca98432e5e4bab30678 /Principles_Of_Foundation_Engineering/Chapter03_1.ipynb
parentaa1863f344766ca7f7c20a395e58d0fb23c52130 (diff)
downloadPython-Textbook-Companions-435840cef00c596d9e608f9eb2d96f522ea8505a.tar.gz
Python-Textbook-Companions-435840cef00c596d9e608f9eb2d96f522ea8505a.tar.bz2
Python-Textbook-Companions-435840cef00c596d9e608f9eb2d96f522ea8505a.zip
add books
Diffstat (limited to 'Principles_Of_Foundation_Engineering/Chapter03_1.ipynb')
-rwxr-xr-xPrinciples_Of_Foundation_Engineering/Chapter03_1.ipynb412
1 files changed, 412 insertions, 0 deletions
diff --git a/Principles_Of_Foundation_Engineering/Chapter03_1.ipynb b/Principles_Of_Foundation_Engineering/Chapter03_1.ipynb
new file mode 100755
index 00000000..520b4f21
--- /dev/null
+++ b/Principles_Of_Foundation_Engineering/Chapter03_1.ipynb
@@ -0,0 +1,412 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e3a75199f67af72d14bee528a629ae06b2506206625e1ef3a86291ef88f556ed"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 03:Shallow Foundations: Ultimate bearing capacity"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.1:Pg-130"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.1\n",
+ "# From Table 3.1\n",
+ "Nc=17.69;\n",
+ "Nq=7.44;\n",
+ "Ny=3.64;\n",
+ "q=3*115;\n",
+ "Gamma=115.0; #lb/ft**3\n",
+ "c=320;\n",
+ "B=5.0;#ft\n",
+ "FS=4;#factor of safety\n",
+ "qu=1.3*c*Nc+q*Nq+0.4*Gamma*B*Ny\n",
+ "qall=qu/FS; #q allowed\n",
+ "Q=qall*B**2;\n",
+ "print Q,\"is allowable gross load in lb\" \n",
+ "\n",
+ "# the answer is slightly different in textbook due to approximation but here answer are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "67269.0 is allowable gross load in lb\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.2:Pg-134"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.2\n",
+ "\n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "Gamma=105.0;#lb/ft**3\n",
+ "Gammasat=118.0;#lb/ft**3\n",
+ "FS=3.0;\n",
+ "pa=2014.125;#lb/ft**2\n",
+ "Depth=[5,10,15,20,25]; # in ft\n",
+ "N60=[4,6,6,10,5]; # in blow/ft\n",
+ "sigmao=[0,0,0,0,0]; # in lb/ft^2\n",
+ "phi=[0,0,0,0,0] # in degree\n",
+ "Gammaw=62.4;\n",
+ "s=0;\n",
+ "print \"depth (ft)\\tN60\\t \\tstress(lb/ft**2)\\t phi(degrees)\\n\"\n",
+ "for i in range(0,5):\n",
+ " sigmao[i]=2*Gamma+(Depth[i]-2)*(Gammasat-Gammaw);\n",
+ " phi[i]=math.sqrt(20*N60[i]*math.sqrt(pa/sigmao[i]))+20;\n",
+ " print \" \",Depth[i],\"\\t \",N60[i],\"\\t\\t \",sigmao[i],\" \\t \\t \\t\",round(phi[i],1),\" \\n\"\n",
+ " s=phi[i]+s\n",
+ "\n",
+ "avgphi=s/(i+1)\n",
+ "\n",
+ "print round(avgphi),\"average friction angle in degrees\"\n",
+ "#using graph get the values of other terms in terms of B and solve for B\n",
+ "def f(x):\n",
+ " return-150000/x**2+5263.9+5527.1/x+228.3*x\n",
+ "x=fsolve(f,4);\n",
+ "print round(x[0],1),\" is the width in ft\"\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "depth (ft)\tN60\t \tstress(lb/ft**2)\t phi(degrees)\n",
+ "\n",
+ " 5 \t 4 \t\t 376.8 \t \t \t33.6 \n",
+ "\n",
+ " 10 \t 6 \t\t 654.8 \t \t \t34.5 \n",
+ "\n",
+ " 15 \t 6 \t\t 932.8 \t \t \t33.3 \n",
+ "\n",
+ " 20 \t 10 \t\t 1210.8 \t \t \t36.1 \n",
+ "\n",
+ " 25 \t 5 \t\t 1488.8 \t \t \t30.8 \n",
+ "\n",
+ "34.0 average friction angle in degrees\n",
+ "4.5 is the width in ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.3:Pg-144"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.3\n",
+ "\n",
+ "import math\n",
+ "phi=25.0; #degrees\n",
+ "Es=620.0; #kN/m**2\n",
+ "Gamma=18.0;#kN/m**2\n",
+ "Df=0.6;# in m\n",
+ "B=0.6; # in m\n",
+ "L=1.2; # in m\n",
+ "Fqc=0.347;\n",
+ "Nq=10.66;\n",
+ "Nc=20.72;\n",
+ "Ngamma=10.88;\n",
+ "mu=0.3; # Poisson's ratio\n",
+ "Fyd=1.0;\n",
+ "c=48.0;#kN/m**2\n",
+ "q=Gamma*(Df+B/2);\n",
+ "Ir=Es/(2*(1+mu)*(c+q*math.tan(phi*math.pi/180.0)));\n",
+ "print round(Ir,2),\" is value of Ir\"\n",
+ "Fcc=Fqc-(1-Fqc)/(Nq*math.tan(phi*math.pi/180.0));\n",
+ "Fcs=1+Nq/Nc*B/L;\n",
+ "Fqs=1+B/L*math.tan(phi*math.pi/180.0);\n",
+ "Fys=1-0.4*B/L;\n",
+ "Fcd=1+0.4*Df/B;\n",
+ "Fqd=1+2.0*math.tan(phi*math.pi/180.0)*(1-math.sin(phi*math.pi/180.0))**2*Df/B;\n",
+ "q1=0.6*18;\n",
+ "Fyc=Fqc;\n",
+ "qu=c*Nc*Fcs*Fcd*Fcc+q1*Nq*Fqs*Fqd*Fqc+1.0/2*Gamma*Ngamma*Fys*Fyd*Fyc;\n",
+ "print round(qu,2),\"is ultimate bearing capacity in kN/m**2\"\n",
+ "\n",
+ "# the answer is slightly different in textbook due to approximation but here answer are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "4.29 is value of Ir\n",
+ "469.24 is ultimate bearing capacity in kN/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.4:Pg-156"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.4\n",
+ "import math\n",
+ "q=110*4.0; #lb/ft**2\n",
+ "Nq=33.3;\n",
+ "phi=35.0; # in degree\n",
+ "Df=4.0; # in ft\n",
+ "B=6.0; # in ft\n",
+ "Gamma=110.0;#lb/ft**3\n",
+ "Ngamma=48.03; #lb/ft**3\n",
+ "B1=6-2*0.5; # in ft\n",
+ "Fqi=1;\n",
+ "Fyi=1;\n",
+ "Fyd=1;\n",
+ "Fqs=1;\n",
+ "Fys=1;\n",
+ "Fqd=1+2*math.tan(phi*math.pi/180)*(1-math.sin(phi*math.pi/180.0))**2*Df/B;\n",
+ "qu=q*Nq*Fqs*Fqd*Fqi+1/2.0*B1*Gamma*Ngamma*Fys*Fyd*Fyi;\n",
+ "Qult=B1*1*qu;\n",
+ "print round(Qult,2),\" is ultimate bearing capacity in lb/ft\" \n",
+ "print round(Qult/2000.0,2),\" is ultimate bearing capacity in ton/ft\"\n",
+ "\n",
+ "# the answer is slightly different in textbook due to approximation but here answer are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "151738.23 is ultimate bearing capacity in lb/ft\n",
+ "75.87 is ultimate bearing capacity in ton/ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.5:Pg-158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.5\n",
+ "\n",
+ "e=0.5; # in ft\n",
+ "B=6; # in ft\n",
+ "k=e/B;\n",
+ "Gamma=110; # in lb/ft^3 \n",
+ "q=440;\n",
+ "print \"get the values of Nqe and Nye from the figure from the value of e/B\"\n",
+ "Nye=26.8;\n",
+ "Nqe=33.4;\n",
+ "Qult=B*1*(q*Nqe+1/2.0*Gamma*B*Nye);\n",
+ "print round(Qult,2),\" is ultimate bearing capacity in lb/ft\"\n",
+ "print round(Qult/2000.0,2),\" is ultimate bearing capacity in ton/ft\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "get the values of Nqe and Nye from the figure from the value of e/B\n",
+ "141240.0 is ultimate bearing capacity in lb/ft\n",
+ "70.62 is ultimate bearing capacity in ton/ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 38
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.6:Pg-159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.6\n",
+ "\n",
+ "Df=0.7; # in m\n",
+ "#from table\n",
+ "Nq=18.4;\n",
+ "Ny=22.4;\n",
+ "q=12.6;\n",
+ "phi=30; #angle in degree\n",
+ "L=1.5;# in m\n",
+ "Fyd=1;\n",
+ "Gamma=18; # in KN/m^3\n",
+ "L1=0.85*1.5; # in m\n",
+ "L2=0.21*1.5; # in m\n",
+ "B=1.5; # in m\n",
+ "A=1/2.0*(L1+L2)*B;\n",
+ "B1=A/L1; #B'\n",
+ "Fqs=1+B1/L1*math.tan(phi*math.pi/180);\n",
+ "Fys=1-0.4*B1/L1;\n",
+ "Fqd=1+2*math.tan(phi*math.pi/180)*(1-math.sin(phi*math.pi/180))**2*Df/B;\n",
+ "Qult=A*(q*Nq*Fqs*Fqd+1/2.0*Gamma*B1*Ny*Fys*Fyd);\n",
+ "print round(Qult,2),\" is ultimate load in kN\"\n",
+ "\n",
+ "# the answer is slightly different in textbook due to approximation but here answer are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "605.45 is ultimate load in kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.7:Pg-161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.7\n",
+ "\n",
+ "e=0.15; # in m\n",
+ "B=1.5; # in m\n",
+ "Fqs=1.0;\n",
+ "L=1.5;# in m\n",
+ "Gamma=18.0; # in KN/m^3\n",
+ "q=0.7*18;\n",
+ "#from table\n",
+ "Nqe=18.4;\n",
+ "Nye=11.58;\n",
+ "Fys=1+(2*e/B-0.68)*(B/L)+(0.43-3/2.0*e/B)*(B/L)**2;\n",
+ "Qult=B*L*(q*Nqe*Fqs+1/2.0*L*Gamma*Nye*Fys);\n",
+ "print round(Qult,2),\"is ultimate load in kN\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "803.03 is ultimate load in kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 45
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.8:Pg-163"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.8\n",
+ "\n",
+ "q=16.0;# in kN/m^2\n",
+ "Nqei=14.2;\n",
+ "Gamma=16.0 # in kN/m^3\n",
+ "B=1.5;# in m\n",
+ "Nyet=20.0;\n",
+ "Qult=B*(Nqei*q+1/2.0*Gamma*B*Nyet);\n",
+ "print round(Qult,2),\" is ultimate load in kN/m\"\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "700.8 is ultimate load in kN/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 48
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file